3 research outputs found
Evaluation of myocardial work in patients with hypertrophic cardiomyopathy and hypertensive left ventricular hypertrophy based on non-invasive pressure-strain loops
BackgroundThe capacity to distinguish hypertrophic cardiomyopathy (HCM) from hypertensive left ventricular hypertrophy (H-LVH) based on morphological features obtained by conventional echocardiography is limited. We investigated the global myocardial work of the left ventricle in two types of hypertrophies using the non-invasive myocardial work index (NMWI).MethodsConventional echocardiography was performed on 107 subjects with preserved left ventricular ejection fraction (LVEF ≥ 50%), who comprised patients with HCM (n = 40), H-LVH (n = 35), and healthy people with normal blood pressure and left ventricular structure (n = 32). Except for the conventional echocardiographic parameters, the left ventricular myocardial work parameters based on pressure-strain loops, including global myocardial work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE), were evaluated in three groups. Multivariate discriminant analysis and receiver operating characteristic (ROC) curve were used to evaluate the incremental value of NMWI for distinguishing HCM from H-LVH.ResultsCompared to the control group, GWI and GCW were significantly lower in HCM patients (P < 0.05), whereas GWI was significantly higher in H-LVH patients. GWW was higher and GWE was significantly decreased in both HCM and H-LVH patients than in the control group (P < 0.05). Multivariate discriminant analysis and ROC curve revealed that the inter-ventricular septum thickness (IVST)/left ventricular posterior wall thickness (LVPWT) and GCW were each able to distinguish HCM from H-LVH. The combination of IVST/LVPWT and GCW discriminated HCM and H-LVH with a higher predictive accuracy of 94.7%.ConclusionNMWI may provide additional information in evaluating the myocardial function in patients with HCM and H-LVH. Myocardial work combined with conventional echocardiography could improve the clinical diagnostic accuracy of distinguishing HCM and H-LVH
First Observations of Mars Atmosphere and Ionosphere with Tianwen-1 Radio-Occultation Technique on 5 August 2021
The radio-occultation technique can provide vertical profiles of planetary ionospheric and atmospheric parameters, which merit the planetary-climate and space-weather scientific research so far. The Tianwen-1 one-way single-frequency radio-occultation technique was developed to retrieve Mars ionospheric and atmospheric parameters. The first radio-occultation event observation experiment was conducted on 5 August 2021. The retrieved excess Doppler frequency, bending angle, refractivity, electron density, neutral mass density, pressure and temperature profiles are presented. The Mars ionosphere M1 (M2) layer peak height is at 140 km (105 km) with a peak density of about 3.7 × 1010 el/m3 (5.3 × 1010 el/m3) in the retrieved electron-density profile. A planetary boundary layer (−2.35 km~5 km), a troposphere (temperature decreases with height) and a stratosphere (24 km–40 km) clearly appear in the retrieved temperature profile below 50 km. Results show that Tianwen-1 radio occultation data are scientifically reliable and useful for further Mars climate and space-weather studies
First Observations of Mars Atmosphere and Ionosphere with Tianwen-1 Radio-Occultation Technique on 5 August 2021
The radio-occultation technique can provide vertical profiles of planetary ionospheric and atmospheric parameters, which merit the planetary-climate and space-weather scientific research so far. The Tianwen-1 one-way single-frequency radio-occultation technique was developed to retrieve Mars ionospheric and atmospheric parameters. The first radio-occultation event observation experiment was conducted on 5 August 2021. The retrieved excess Doppler frequency, bending angle, refractivity, electron density, neutral mass density, pressure and temperature profiles are presented. The Mars ionosphere M1 (M2) layer peak height is at 140 km (105 km) with a peak density of about 3.7 × 1010 el/m3 (5.3 × 1010 el/m3) in the retrieved electron-density profile. A planetary boundary layer (−2.35 km~5 km), a troposphere (temperature decreases with height) and a stratosphere (24 km–40 km) clearly appear in the retrieved temperature profile below 50 km. Results show that Tianwen-1 radio occultation data are scientifically reliable and useful for further Mars climate and space-weather studies