8,802 research outputs found
Spatiotemporal discrimination thresholds for dynamic random fractal (1/f) textures
Natural scenes are fractal in space (ie they have 1/f B spatial frequency spectra) and time (1/f A temporal spectra), and can be compellingly mimicked by fractal textures. If dynamic fractal texture statistics are used to describe natural scenes, then data on discriminability of such textures are required. The smallest detectable change was measured separately for 10 spatial (0.4 to 2.2) and 8 temporal exponents (static, and 0.2 to 1.4) with an adaptive staircase. Computational constraints limited each fractal to 64 frames (~ 2 s) of 64 × 64 pixel images. Spatial discriminations were easiest when the spatial exponent B was ~ 1.6 and were similar across all temporal exponents. Temporal discriminations were easiest when the temporal exponent A was ~ 0.8, and increased in difficulty as the spatial exponent increased. This similarity in spatial discrimination thresholds for static and dynamic fractals suggests that the spatial and temporal dimensions are independent in dynamic fractals (at least for spatial judgments), as is often assumed. The dependence of temporal judgments on the coarseness of the texture (ie on the spatial exponent) is understandable, as a 1 mm change in position is more noticeable for a 1 mm object than for a 100 m object
On the Discovery of the GZK Cut-off
The recent claim of the '5 sigma' observation of the Greisen and Zatzepin and
Kuzmin cut-off by the HiRes group based on their nine years data is a
significant step toward the eventual solution of the one of the most intriguing
questions which has been present in physics for more than forty years. However
the word 'significance' is used in the mentioned paper in the sense which is
not quite obvious. In the present paper we persuade that this claim is a little
premature.Comment: 10 page
Collisions of boosted black holes: perturbation theory prediction of gravitational radiation
We consider general relativistic Cauchy data representing two nonspinning,
equal-mass black holes boosted toward each other. When the black holes are
close enough to each other and their momentum is sufficiently high, an
encompassing apparent horizon is present so the system can be viewed as a
single, perturbed black hole. We employ gauge-invariant perturbation theory,
and integrate the Zerilli equation to analyze these time-asymmetric data sets
and compute gravitational wave forms and emitted energies. When coupled with a
simple Newtonian analysis of the infall trajectory, we find striking agreement
between the perturbation calculation of emitted energies and the results of
fully general relativistic numerical simulations of time-symmetric initial
data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107
Understanding the training and education needs of homecare workers supporting people with dementia and cancer: a systematic review of reviews
Many people with dementia, supported by family carers, prefer to live at home and may rely on homecare support services. People with dementia are also often living with multimorbidities, including cancer. The main risk factor for both cancer and dementia is age and the number of people living with dementia and cancer likely to rise. Upskilling the social care workforce to facilitate more complex care is central to national workforce strategies and challenges. Training and education development must also respond to the key requirements of a homecare workforce experiencing financial, recruitment and retention difficulties. This systematic review of reviews provides an overview of dementia and cancer training and education accessible to the homecare workforce. Findings reveal there is a diverse range of training and education available, with mixed evidence of effectiveness. Key barriers and facilitators to effective training and education are identified in order to inform future training, education and learning development for the homecare workforce supporting people with dementia and cancer
Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding
Hydroxide-catalysis bonding is a precision technique used for jointing components in opto-mechanical systems and has been implemented in the construction of quasi-monolithic silica suspensions in gravitational wave detectors. Future detectors are likely to operate at cryogenic temperatures which will lead to a change in test mass and suspension material. One candidate material is mono-crystalline sapphire. Here results are presented showing the influence of various bonding solutions on the strength of the hydroxide-catalysis bonds formed between sapphire samples, measured both at room temperature and at 77 K, and it is demonstrated that sodium silicate solution is the most promising in terms of strength, producing bonds with a mean strength of 63 MPa. In addition the results show that the strengths of bonds were undiminished when tested at cryogenic temperatures
Finding Distant Galactic H Ii Regions
The WISE Catalog of Galactic H ii Regions contains ~2000 H ii region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic H ii region mid-infrared morphology of WISE 12 emission surrounding 22 emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope hydrogen radio recombination line and radio continuum detections in the X-band (9 GHz; 3 cm) of 302 WISE H ii region candidates (out of 324 targets observed) in the zone , Here we extend the sky coverage of our H ii region Discovery Survey, which now contains nearly 800 H ii regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, 5 have coordinates consistent with the Outer Scutum–Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes \u3e1° in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183−01.422; −54.9 ). With Heliocentric distances \u3e22 kpc and Galactocentric distances \u3e16 kpc, the OSC H ii regions are the most distant known in the Galaxy. We detect an additional three H ii regions near whose LSR velocities place them at Galactocentric radii \u3e19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation
Playlists and time perspective
Research on playlists has focused on how usage is related to technological and music industry variables, and the demographic characteristics of users. However, it also seems reasonable to suspect a psychological component to playlist usage. The present research considered an individual’s propensity to devise and make use of playlists in terms of time perspective. Significant results indicate an emphasis on the time at hand while listening, so that playlist use has a present-orientated time perspective, rather than a future-oriented time perspective. The findings support other recent research illustrating that exercising control over everyday listening is an important aspect of musical behavior in present-day music listening
- …