167 research outputs found
Sleep spectral power correlates of prospective memory maintenance
Prospective memory involves setting an intention to act that is maintained over time and executed when appropriate. Slow wave sleep (SWS) has been implicated in maintaining prospective memories, although which SWS oscillations most benefit this memory type remains unclear. Here, we investigated SWS spectral power correlates of prospective memory. Healthy young adult participants completed three ongoing tasks in the morning or evening. They were then given the prospective memory instruction to remember to press "Q" when viewing the words "horse" or "table" when repeating the ongoing task after a 12-h delay including overnight, polysomnographically recorded sleep or continued daytime wakefulness. Spectral power analysis was performed on recorded sleep EEG. Two additional groups were tested in the morning or evening only, serving as time-of-day controls. Participants who slept demonstrated superior prospective memory compared with those who remained awake, an effect not attributable to time-of-day of testing. Contrary to prior work, prospective memory was negatively associated with SWS. Furthermore, significant increases in spectral power in the delta-theta frequency range (1.56 Hz-6.84 Hz) during SWS was observed in participants who failed to execute the prospective memory instructions. Although sleep benefits prospective memory maintenance, this benefit may be compromised if SWS is enriched with delta-theta activity
The influence of encoding strategy on associative memory consolidation across wake and sleep
Sleep benefits memory consolidation. However, factors present at initial encoding may moderate this effect. Here, we examined the role that encoding strategy plays in subsequent memory consolidation during sleep. Eighty-nine participants encoded pairs of words using two different strategies. Each participant encoded half of the word pairs using an integrative visualization technique, where the two items were imagined in an integrated scene. The other half were encoded nonintegratively, with each word pair item visualized separately. Memory was tested before and after a period of nocturnal sleep ( N = 47) or daytime wake ( N = 42) via cued recall tests. Immediate memory performance was significantly better for word pairs encoded using the integrative strategy compared with the nonintegrative strategy ( P < 0.001). When looking at the change in recall across the delay, there was significantly less forgetting of integrated word pairs across a night of sleep compared with a day spent awake ( P < 0.001), with no significant difference in the nonintegrated pairs ( P = 0.19). This finding was driven by more forgetting of integrated compared with not-integrated pairs across the wake delay ( P < 0.001), whereas forgetting was equivalent across the sleep delay ( P = 0.26). Together, these results show that the strategy engaged in during encoding impacts both the immediate retention of memories and their subsequent consolidation across sleep and wake intervals
Beta spectral power during sleep is associated with impaired recall of extinguished fear
The failure to retain memory for extinguished fear plays a major role in the maintenance of post-traumatic stress disorder (PTSD), with successful extinction recall necessary for symptom reduction. Disturbed sleep, a hallmark symptom of PTSD, impairs fear extinction recall. However, our understanding of the electrophysiological mechanisms underpinning sleep's role in extinction retention remain underdetermined. We examined the relationship between the microarchitecture of sleep and extinction recall in healthy humans (n=71, both male and females included) and a pilot study in individuals with PTSD (n=12). Participants underwent a fear conditioning and extinction protocol over two days, with sleep recording occurring between conditioning and extinction. Twenty-four hours after extinction learning, participants underwent extinction recall. Power spectral density (PSD) was computed for pre- and post-extinction learning sleep. Increased beta band PSD (~17-26Hz) during pre-extinction learning sleep was associated with worse extinction recall in healthy participants (r=.41, p=.004). Beta PSD was highly stable across three nights of sleep (intraclass correlations (ICC)>0.92). Results suggest beta band PSD is elevated in PTSD, and is specifically implicated in difficulties recalling extinguished fear
Changes in Sleep Regularity and Perceived Life Stress across the COVID-19 Pandemic : A Longitudinal Analysis of a Predominately Female United States Convenience Sample
The Coronavirus Disease 2019 (COVID-19) pandemic had a profound impact on sleep and psychological well-being for individuals worldwide. This pre-registered investigation extends our prior study by tracking self-reported social jetlag (SJL), social sleep restriction (SSR), and perceived life stress from May 2020 through October 2021. Using web-based surveys, we collected self-reported sleep information with the Ultrashort Munich Chronotype Questionnaire at three additional timepoints (September 2020, February 2021 and October 2021). Further, we measured perceived life stress with the Perceived Stress Scale at two additional timepoints (February 2021 and October 2021). In a subsample of 181, predominantly female (87%), United States adults aged 19-89 years, we expanded our prior findings by showing that the precipitous drop in SJL during the pandemic first wave (May 2020), compared to pre-pandemic (February, 2020), rapidly rose with loosening social restrictions (September 2020), though never returned to pre-pandemic levels. This effect was greatest in young adults, but not associated with self-reported chronotype. Further, perceived life stress decreased across the pandemic, but was unrelated to SJL or SSR. These findings suggest that sleep schedules were sensitive to pandemic-related changes in social restrictions, especially in younger participants. We posit several possible mechanisms supporting these findings
Sleep Power Spectral Density and Spindles in PTSD and Their Relationship to Symptom Severity
Sleep disturbances are common in post-traumatic stress disorder (PTSD), although which sleep microarchitectural characteristics reliably classify those with and without PTSD remains equivocal. Here, we investigated sleep microarchitectural differences (i.e., spectral power, spindle activity) in trauma-exposed individuals that met ( n = 45) or did not meet ( n = 52) criteria for PTSD and how these differences relate to post-traumatic and related psychopathological symptoms. Using ecologically-relevant home sleep polysomnography recordings, we show that individuals with PTSD exhibit decreased beta spectral power during NREM sleep and increased fast sleep spindle peak frequencies. Contrary to prior reports, spectral power in the beta frequency range (20.31-29.88 Hz) was associated with reduced PTSD symptoms, reduced depression, anxiety and stress and greater subjective ability to regulate emotions. Increased fast frequency spindle activity was not associated with individual differences in psychopathology. Our findings may suggest an adaptive role for beta power during sleep in individuals exposed to a trauma, potentially conferring resilience. Further, we add to a growing body of evidence that spindle activity may be an important biomarker for studying PTSD pathophysiology
Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice
The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia
- …