2,766 research outputs found
Sediment microbial assemblage structure is modified by marine polychaete gut passage
No embargo required
Effect of human rotavirus vaccine on severe diarrhea in African infants.
BACKGROUND: Rotavirus is the most common cause of severe gastroenteritis among young children worldwide. Data are needed to assess the efficacy of the rotavirus vaccine in African children. METHODS: We conducted a randomized, placebo-controlled, multicenter trial in South Africa (3166 infants; 64.1% of the total) and Malawi (1773 infants; 35.9% of the total) to evaluate the efficacy of a live, oral rotavirus vaccine in preventing severe rotavirus gastroenteritis. Healthy infants were randomly assigned in a 1:1:1 ratio to receive two doses of vaccine (in addition to one dose of placebo) or three doses of vaccine--the pooled vaccine group--or three doses of placebo at 6, 10, and 14 weeks of age. Episodes of gastroenteritis caused by wild-type rotavirus during the first year of life were assessed through active follow-up surveillance and were graded with the use of the Vesikari scale. RESULTS: A total of 4939 infants were enrolled and randomly assigned to one of the three groups; 1647 infants received two doses of the vaccine, 1651 infants received three doses of the vaccine, and 1641 received placebo. Of the 4417 infants included in the per-protocol efficacy analysis, severe rotavirus gastroenteritis occurred in 4.9% of the infants in the placebo group and in 1.9% of those in the pooled vaccine group (vaccine efficacy, 61.2%; 95% confidence interval, 44.0 to 73.2). Vaccine efficacy was lower in Malawi than in South Africa (49.4% vs. 76.9%); however, the number of episodes of severe rotavirus gastroenteritis that were prevented was greater in Malawi than in South Africa (6.7 vs. 4.2 cases prevented per 100 infants vaccinated per year). Efficacy against all-cause severe gastroenteritis was 30.2%. At least one serious adverse event was reported in 9.7% of the infants in the pooled vaccine group and in 11.5% of the infants in the placebo group. CONCLUSIONS: Human rotavirus vaccine significantly reduced the incidence of severe rotavirus gastroenteritis among African infants during the first year of life. (ClinicalTrials.gov number, NCT00241644.
Disrupted-in-schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function
Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have
shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display
abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly
understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the
hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we
show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning
of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies
reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate
brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3þ hypothalamic
progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1bþ neurons,
implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis,
develop abnormally, and rx3-derived pomcþ neurons are disorganised. Abnormal hypothalamic development is associated
with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae
show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of
abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for
the correct functioning of the HPA/HPI axis
Plasma-generated poly(allyl alcohol) antifouling coatings for cellular attachment
Conformal poly(allyl alcohol) (PAA) coatings were grown on a biomedical grade polyurethane scaffold using pulsed plasma polymerization of the allyl alcohol monomer. The creation of a continuous wave polymer primer layer increases the interfacial adhesion and stability of a subsequent pulsed plasma deposited PAA film. The resulting PAA coatings are strongly hydrophilic and stable following 7 days incubation in biological media. Films prepared through this energyefficient, two-step process promote human dermal fibroblast cell culture, while resisting E. coli biofilm formation
Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape
This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recordData accessibility:
The data that support the findings of this study are openly available at the following DOI:
https://doi.org/10.5285/61C5097B-6717-4692-A8A4-D32CCA0E61A9)Arctic landscapes are changing rapidly in response to warming, but future predictions are hindered by difficulties in scaling ecological relationships from plots to biomes. Unmanned aerial systems (UAS, hereafter 'drones') are increasingly used to observe Arctic ecosystems over broader extents than can be measured using ground-based approaches and facilitate the interpretation of coarse-grained remotely-sensed datasets. However, more information is needed about how drone-acquired remote sensing observations correspond with ecosystem attributes such as aboveground biomass. Working across a willow shrub-dominated alluvial fan at a focal study site in the Canadian Arctic, we conducted peak season drone surveys with a RGB camera and multispectral multi camera array to derive photogrammetric reconstructions of canopy and normalised difference vegetation index (NDVI) maps along with in situ point intercept measurements and biomass harvests from 36, 0.25 m2 plots. We found high correspondence between canopy height measured using in situ point intercept compared to drone-photogrammetry (concordance correlation coefficient = 0.808), although the photogrammetry heights were positively biased by 0.14 m relative to point intercept heights. Canopy height was strongly and linearly related to aboveground biomass, with similar coefficients of determination for point framing (R2 = 0.92) and drone-based methods (R2 = 0.90). NDVI was positively related to aboveground biomass, phytomass and leaf biomass. However, NDVI only explained a small proportion of the variance in biomass (R2 between 0.14 and 0.23 for logged total biomass) and we found moss cover influenced the NDVI-phytomass relationship. Biomass is challenging to infer from drone-derived NDVI, particularly in ecosystems where bryophytes cover a large proportion of the land surface. Our findings suggest caution with broadly attributing change in fine-grained NDVI to biomass differences across biologically and topographically complex tundra landscapes. By comparing structural, spectral and on-the-ground ecological measurements, we can improve understanding of tundra vegetation change as inferred from remote sensing.Natural Environment Research Council (NERC)Dartmouth CollegeAarhus University Research FoundationEuropean Union Horizon 202
Ferredoxin 1b deficiency leads to testis disorganization, impaired spermatogenesis and feminization in zebrafish
The roles of steroids in zebrafish sex differentiation, gonadal development and function of the adult gonad are poorly understood. Herein, we have employed a ferredoxin 1b (fdx1b) mutant zebrafish to explore such processes. Fdx1b is an essential electron-providing cofactor to mitochondrial steroidogenic enzymes, which are crucial for glucocorticoid and androgen production in vertebrates. Fdx1b-/- zebrafish mutants develop into viable adults, in which concentrations of androgens and the glucocorticoid, cortisol, are significantly reduced. Adult fdx1b-/- mutant zebrafish display predominantly female secondary sex characteristics but may possess either ovaries or testes, confirming that androgen signaling is dispensable for testicular differentiation in this species, as previously demonstrated in androgen receptor mutant zebrafish. Adult male fdx1b-/- mutant zebrafish do not exhibit characteristic breeding behaviors, and sperm production is reduced, resulting in infertility in standard breeding scenarios. However, eggs collected from wild-type females can be fertilized by the sperm of fdx1b-/- mutant males by IVF. The testes of fdx1b-/- mutant males are disorganized and lack defined seminiferous tubule structure. Expression of several pro-male and spermatogenic genes is decreased in the testes of fdx1b-/- mutant males, including pro-male transcription factor SRY-box 9a (sox9a) and spermatogenic genes insulin-like growth factor 3 (igf3) and insulin-like 3 (insl3). This study establishes an androgen- and cortisol-deficient fdx1b zebrafish mutant as a model for understanding the impacts of steroid deficiency on sex development and reproductive function. This model will be particularly useful for further investigation of the roles of steroids in spermatogenesis, gonadal development and regulation of reproductive behavior, thus enabling further elucidation of the physiological consequences of endocrine disruption in vertebrates
Bidirectional crosstalk between hypoxia-inducible factor and glucocorticoid signalling in zebrafish larvae
In the last decades in vitro studies highlighted the potential for crosstalk between Hypoxia-Inducible Factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid receptor (Gr) responsiveness and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes both glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF activity. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing it. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this crosstalk occurs in vivo
Evaluation of the effect of fuel properties on the fuel spray and jet characteristics in a HGV DI diesel engine operated by used cooking oils
Fuel injection systems in modern diesel engines are designed and built to comply with very stringent environmental standards. They should also meet the highest level of fuel economy. Drivability, rapid response and easy and accurate control are a common demand. Changing the fuel characteristics could affect the performance of the fuel injection system. This study focuses on the evaluation of fuel spray characteristics of straight used cooking oil (SUCO) and its blends with petroleum diesel (PD) as a surrogate for pure PD. Used cooking oil blends have quite different physical properties from those of pure PD. Data for the lower heating value (LHV), density and viscosity were obtained from laboratory analysis. These data were merged with the physical and thermodynamic conditions of the diesel engine of interest to evaluate the dynamic behaviour of the fuel jet in 360° of crank rotation namely, the compression stroke, and the power stroke including the injection process. Engine operational conditions were calculated using a diesel dual thermodynamic cycle taking into account fuel injection adjustment at three different speeds, namely, idle speed, maximum torque speed and rated power speed. The results showed that fuel jet characteristics vary with SUCO content in the fuel blend. Two ranges of SUCO content in the blends were distinguished, 0 – 80% SUCO content and 80 – 100% SUCO content. Both showed a constant rate of change of jet characters per 10% increase in SUCO content in the fuel blend. Lower rates of change of fuel characters were observed at 0-80% SUCO content. The higher the temperature, the lower the rate of change of fuel jet characteristics
- …