271 research outputs found

    Influence of the sulphurization time on the morphological, chemical, structural and electrical properties of Cu2ZnSnS4 polycrystalline thin films

    Get PDF
    The effects of the sulphurization annealing time on the morphological, chemical, structural and electrical properties of CZTS thin films were investigated by scanning electron microscopy, X-ray energy dispersive spectroscopy, Hall effect and electrical conductivity measurements in samples annealed during different time intervals. The increase of the annealing time was found to improve the chemical composition of the samples and to, slightly, increase the crystallite size. Small amounts of Na were measured in the samples. However, the concentration of Na does not increase significantly with the annealing time and should not modify the characteristics of the CZTS thin films. It was also found that at high temperature the electrical conductivity is dominated by thermal emission of carriers over the inter-grain potential barriers. As the temperature decreases different hopping conduction mechanisms start to dominate. At first with nearest-neighbour hopping and successively changing to variable range hopping conduction with a crossover from Mott and Efros–Shklovskii behavior. The electrical conductivity, the concentration of free holes, acceptors and donors, traps0 density at the grain boundaries and the grain potential barriers height were found to increase with the annealing time. However, a significant drop in the compensation ratio from 0.8 to 0.5 was also detected.info:eu-repo/semantics/publishedVersio

    A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability

    Full text link
    Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies ~ 10^4 times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
    corecore