6 research outputs found

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated biochar derived from Butia catarinensis

    No full text
    A high surface area activated carbon was produced from the seed of Butia catarinensis (Bc), which was utilized for removing captopril from synthetic pharmaceutical industry wastewaters. The activated carbon was made by mixing ZnCl2 and Bc at a proportion of 1:1 and pyrolyzed at 600° (ABc-600). The material was characterized by the Boehm titration, hydrophilic/ hydrophobic ratio, elemental analysis, TGA, FTIR, and N2 isotherm (surface area (SBET), total pore volume (TPV), and pore size distribution (PSD)). The characterization data showed that the adsorbent displayed a hydrophilic surface due to the presence of several polar groups. The carbon material presented a TPV of 0.392 cm3 g−1, and SBET of 1267 m2 g−1. The equilibrium and kinetics data were suitably fitted to Liu isotherm and Avrami-fractional-order. The employment of the ABc-600 in the treatment of synthetic pharmaceutical industry wastewater exhibited high effectiveness in their removals (up to 99.0 %)
    corecore