5 research outputs found

    The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global boundary Stratotype Section and Point for the Anthropocene series

    Get PDF
    An annually laminated succession in Crawford Lake, Ontario, Canada is proposed as the Global boundary Stratotype Section and Point (GSSP) for the Anthropocene as a series/epoch with a base dated at 1950 CE. Varve couplets of organic matter capped by calcite precipitated each summer in alkaline surface waters reflect environmental change at global to local scales. Spheroidal carbonaceous particles and nitrogen isotopes record an increase in fossil fuel combustion in the early 1950s, coinciding with fallout from nuclear and thermonuclear testing—239+240Pu and 14C:12C, the latter more than compensating for the effects of old carbon in this dolomitic basin. Rapid industrial expansion in the North American Great Lakes region led to enhanced leaching of terrigenous elements by acid precipitation during the Great Acceleration, and calcite precipitation was reduced, producing thin calcite laminae around the GSSP that is marked by a sharp decline in elm pollen (Dutch Elm disease). The lack of bioturbation in well-oxygenated bottom waters, supported by the absence of fossil pigments from obligately anaerobic purple sulfur bacteria, is attributed to elevated salinities and high alkalinity below the chemocline. This aerobic depositional environment, unusual in a meromictic lake, inhibits the mobilization of 239Pu, the proposed primary stratigraphic guide for the Anthropocene

    Dilute concentrations of maritime fuel can modify sediment reworking activity of high-latitude marine invertebrates

    No full text
    Multiple expressions of climate change, in particular warming-induced reductions in the type, extent and thickness of sea ice, are opening access and providing new viable development opportunities in high-latitude regions. Coastal margins are facing these challenges, but the vulnerability of species and ecosystems to the effects of fuel contamination associated with increased maritime traffic is largely unknown. Here, we show that low concentrations of the water-accommodated fraction of marine fuel oil, representative of a dilute fuel oil spill, can alter functionally important aspects of the behaviour of sediment-dwelling invertebrates. We find that the response to contamination is species specific, but that the range in response among individuals is modified by increasing fuel concentrations. Our study provides evidence that species responses to novel and/or unprecedented levels of anthropogenic activity associated with the opening up of high-latitude regions can have substantive ecological effects, even when human impacts are at, or below, commonly accepted safe thresholds. These secondary responses are often overlooked in broad-scale environmental assessments and marine planning yet, critically, they may act as an early warning signal for impending and more pronounced ecological transitions

    North Flinders Reef (Coral Sea, Australia) Porites sp. corals as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series

    No full text
    Corals are unique in the suite of proposed Anthropocene Global Boundary Stratotype Section and Point (GSSP) archives, as living organisms that produce aragonite exoskeletons preserved in the geological record that contain highly accurate and precise (<±1 year) internal chronologies. The GSSP candidate site North Flinders Reef in the Coral Sea (Australia) is an offshore oceanic reef, and therefore less vulnerable to local human influences than those closer to the coast. Here, we present geochemical records from two Porites sp. corals sampled at an annual to pluri-annual (i.e. 3–5 years) resolution that shows clear global and regional human impacts. Atmospheric nuclear bomb testing by-products (14C,239+240Pu) show a clear increase in the Flinders Reef corals coincident with well-dated nuclear testing operations. By contrast, the radionuclides 241Am and 137Cs are present at low or undetectable levels, as are spheroidal carbonaceous fly-ash particles. Coral δ13C shows centennial variability likely influenced by growth effects in the 18th century and with a progression to lower values starting in 1880 and accelerating post-1970. The latter may be related to the Suess Effect resulting from 13C-depleted fossil fuel burning. Coral δ15N decreased between 1710 and 1954 with a reversal post-1954. Coral temperature proxies indicate prominent centennial variability with equally warm conditions in the 18th and end of 20th century. However, the exact mechanisms responsible for the mid-20th century changes in these parameters need to be scrutinised in further detail.ISSN:2053-0196ISSN:2053-020

    The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global Boundary Stratotype Section and point for the Anthropocene series

    No full text
    An annually laminated succession in Crawford Lake, Ontario, Canada is proposed for the Global boundary Stratotype Section and Point (GSSP) to define the Anthropocene as a series/epoch with a base dated at 1950 CE. Varve couplets of organic matter capped by calcite precipitated each summer in alkaline surface waters reflect environmental change at global to local scales. Spheroidal carbonaceous particles and nitrogen isotopes record an increase in fossil fuel combustion in the early 1950s, coinciding with early fallout from nuclear and thermonuclear testing - 239+240Pu and 14C: 12C, the latter more than compensating for the effects of old carbon in this dolomitic basin. Rapid industrial expansion in the North American Great Lakes region led to enhanced leaching of terrigenous elements by acid precipitation during the Great Acceleration, and calcite precipitation was reduced, producing thin calcite laminae around the GSSP that is marked by a sharp decline in elm pollen (Dutch Elm disease). The lack of bioturbation in well-oxygenated bottom waters, supported by the absence of fossil pigments from obligately anaerobic purple sulfur bacteria, is attributed to elevated salinities and high alkalinity below the chemocline. This aerobic depositional environment, highly unusual in a meromictic lake, inhibits the mobilization of Pu, the proposed primary stratigraphic guide for the Anthropocene. </p

    North Flinders Reef (Coral Sea, Australia) <i>Porites</i> sp. corals as a candidate Global Boundary Stratotype Section and Point for the Anthropocene series

    No full text
    Corals are unique in the suite of proposed Anthropocene Global Boundary Stratotype Section and Point (GSSP) archives, as living organisms that produce aragonite exoskeletons preserved in the geological record that contain highly accurate and precise (&lt;±1 year) internal chronologies. The GSSP candidate site North Flinders Reef in the Coral Sea (Australia) is an offshore oceanic reef, and therefore less vulnerable to local human influences than those closer to the coast. Here, we present geochemical records from two Porites sp. corals sampled at an annual to pluri-annual (i.e. 3–5 years) resolution that shows clear global and regional human impacts. Atmospheric nuclear bomb testing by-products (14C,239+240Pu) show a clear increase in the Flinders Reef corals coincident with well-dated nuclear testing operations. By contrast, the radionuclides 241Am and 137Cs are present at low or undetectable levels, as are spheroidal carbonaceous fly-ash particles. Coral δ13C shows centennial variability likely influenced by growth effects in the 18th century and with a progression to lower values starting in 1880 and accelerating post-1970. The latter may be related to the Suess Effect resulting from 13C-depleted fossil fuel burning. Coral δ15N decreased between 1710 and 1954 with a reversal post-1954. Coral temperature proxies indicate prominent centennial variability with equally warm conditions in the 18th and end of 20th century. However, the exact mechanisms responsible for the mid-20th century changes in these parameters need to be scrutinised in further detail. Plain Language summary: This work proposes a candidate natural archive for the official marker of the Anthropocene that geologists will use to mark this important interval in time. Our candidate is a live coral from North Flinders Reef in the Coral Sea (Australia), located 150 km east of the Great Barrier Reef, a location that is remote from direct local human influences. Corals are a unique archive of tropical ocean change because they incorporate the geochemical signature from seawater into their limestone skeleton during their long life-spans. Here we investigated a number of geochemical markers in yearly growth layers of the corals to define several markers for the Anthropocene based on changes in temperature, water chemistry, chemicals from pollution and fertilisers, radioactive products from nuclear bomb testing, and by-products from burning fossil fuels. We have detected clear human influences in several of these markers.</p
    corecore