3 research outputs found

    Reproduce Anything, Anywhere: A Generic Simulation Suite for Tango Control Systems

    No full text
    International audienceSynchrotron Light Sources are required to operate on 24/7 schedules, while at the same time must be continuously upgraded to cover scientists needs of improving its efficiency and performance. These operation conditions impose rigid calendars to control system engineers, reducing to few hours per month the maintenance and testing time available. The SimulatorDS project has been developed to cope with these restrictions and enable test-driven development, replicating in a virtual environment the conditions in which a piece of software has to be developed or debugged. This software provides devices and scripts to easily duplicate or prototype the structure and behavior of any Tango Control System, using the Fandango python library* to export the control system status and create simulated devices dynamically. This paper will also present first large scale tests using multiple SimulatorDS instances running on a commercial cloud

    Pushing the Limits of Tango Archiving System using PostgreSQL and Time Series Databases

    No full text
    International audienceThe Tango HDB++ project is a high performance event-driven archiving system which stores data with micro-second resolution timestamps, using archivers written in C++. HDB++ supports MySQL/MariaDB and Apache Cassandra backends and has been recently extended to support PostgreSQL and TimescaleDB*, a time-series PostgreSQL extension. The PostgreSQL backend has enabled efficient multi-dimensional data storage in a relational database. Time series databases are ideal for archiving and can take advantage of the fact that data inserted do not change. TimescaleDB has pushed the performance of HDB++ to new limits. The paper will present the benchmarking tools that have been developed to compare the performance of different backends and the extension of HDB++ to support TimescaleDB for insertion and extraction. A comparison of the different supported back-ends will be presented

    Building S.C.A.D.A. Systems in Scientific Installations with Sardana and Taurus

    No full text
    International audienceSardana and Taurus form a python software suite for Supervision, Control and Data Acquisition (SCADA) optimized for scientific installations. Sardana and Taurus are open source and deliver a substantial reduction in both time and cost associated to the design, development and support of control and data acquisition systems. The project was initially developed at ALBA and later evolved to an international collaboration driven by a community of users and developers from ALBA, DESY, MAXIV and Solaris as well as other institutes and private companies. The advantages of Sardana for its adoption by other institutes are: free and open source code, comprehensive workflow for enhancement proposals, a powerful environment for building and executing macros, optimized access to the hardware and a generic Graphical User Interface (Taurus) that can be customized for every application. Sardana and Taurus are currently based on the Tango Control System framework but also capable to inter-operate to some extend with other control systems like EPICS. The software suite scales from small laboratories to large scientific institutions, allowing users to use only some parts or employ it as a whole
    corecore