19 research outputs found

    A highly responsive nh3 sensor based on pd-loaded zno nanoparticles prepared via a chemical precipitation approach

    Get PDF
    The gas-detecting ability of nanostructured ZnO has led to significant attention being paid to the development of a unique and effective approach to its synthesis. However, its poor sensitivity, cross-sensitivity to humidity, long response/recovery times and poor selectivity hinder its practical use in environmental and health monitoring. In this context, the addition of noble metals, as dopants or catalysts to modify the ZnO surface has been examined to enhance its sensing performance

    Opto-electronic properties of anodized TiO2 nanotube arrays investigated using electron energy loss spectroscopy

    Get PDF
    A study of the nanoscale crystallinity of anodized TiO2 nanotubes is reported with the aim of demonstrating its influence on the localized optical and electronic properties of the structure. By employing scanning transmission electron microscopy, coupled with electron energy loss spectroscopy, x-ray diffraction and electron energy filtered jump-ratio imaging to probe changes in the electron near edge fine structure of the Ti L3,2 ionization edge, it is found that nanotubes annealed at 450 °C in air for 3 h crystallize in the anatase polymorph along their walls, with the underlying thick oxide barrier layer being predominantly rutile

    TiO2 nanotube based dye- sensitised solar cells

    Get PDF
    Philosophiae Doctor - PhDThis work investigated the synthesis of Al2O3-coated TiO2 nanotubes via the anodisation technique for application in DSCs. TiO2 nanotube arrays with an average length of 15 μm, diameter of 50 nm and wall thickness of 15 nm were synthesised via anodisation using an organic neutral electrolyte consisting of 2 M H2O + 0.15 M NH4F + ethylene glycol (EG) at an applied voltage of 60 V for 6 hours. In addition, scanning electron microscope (SEM) micrographs showed that anodisation at these conditions yields nanotubes with smooth walls and hexagonally shaped, closed bottoms. X-ray diffraction (XRD) patterns revealed that the as-anodised nanotubes were amorphous and as such were annealed at 450 °C for 2 hours in air at atmospheric pressure, which yielded crystalline anatase TiO2 nanotubes. Highresolution transmission electron microscope (TEM) images revealed that the nanotube walls comprised of individual nano-sized TiO2 crystallites. Photoluminescence (PL) spectroscopy showed that the optical properties, especially the bandgap of the TiO2 nanotubes are dependent on the crystallinity, which in turn was dependent on the structural characteristics, such as the wall thickness, diameter and length. The PL measurements were supplemented by Raman spectra, which revealed an increased in the quantum confinement of the optical phonon modes of the nanotubes synthesised at low anodisation voltages, consequently yielding a larger bandgap The annealed nanotubes were then coated with a thin layer of alumina (Al2O3) using a simple sol-gel dip coating method, effectively used to coat films of nanoparticles. Atomic force microscopy (AFM) showed that the average nanotube diameter increased post sol-gel deposition, which suggests that the nanotubes are coated with a layer of Al2O3. This was confirmed with HR-TEM, in conjunction with selected area electron diffraction (SAED) and XRD analyses, which showed the coating of the nanotube walls with a thin layer of amorphous Al2O3 with a thickness between 4 and 7 nm. Ultraviolet-visible (UVvis) absorbance spectra showed that the dye-adsorption ability of the nanotubes are enhanced by the Al2O3 coating and hence is a viable material for solar cell application. Upon application in the DSC, it was found by means of photo-current density – voltage (I – V) measurements that a DSC fabricated with a 15 μm thick layer of bare TiO2 nanotubes has a photon-to-light conversion efficiency of 4.56%, which increased to 4.88% after coating the nanotubes with a layer of alumina. However, these devices had poorer conversion efficiencies than bare and Al2O3-coated TiO2 nanoparticle based DSCs, which boasted with efficiencies of 6.54 and 7.26%, respectively. The low efficiencies of the TiO2 nanotube based DSCs are ascribed to the low surface area of the layer of nanotubes, which yielded low photocurrent densities. Electrochemical impedance spectroscopy (EIS) showed that the electron lifetime in the alumina coated nanotubes are almost 20 times greater than in a bare layer of nanoparticles. In addition, it was also found that the charge transfer resistance at the interface of the TiO2/dye/electrolyte is the lowest for an Al2O3-coated TiO2 layer

    β-FeOOH/TiO2 Heterojunction for Visible Light-Driven Photocatalytic Inactivation of E. coli

    Get PDF
    In this work, we report on the photocatalytic properties of β-FeOOH/TiO2 heterojunction material for the inactivation of Escherischia coli. XRD, HRTEM, EELS, ELNEFS were used to characterize the as-prepared material. A log reduction of the initial bacterial population was achieved after 45 min of irradiation in the presence of 0.1 mL of hydrogen peroxide. The enhanced photocatalytic activity was due to the effective charge transfer between Ti4+, Fe3+, and O2+ as shown from the EELS analysis of the heterojunction structure. The role of various reactive species formed due to the photocatalytic reaction was also investigated. Presence of •OH radicals in the bulk solution was the key factor in the photocatalytic inactivation of E. coli

    Effect of the annealing atmosphere on the layer interdiffusion in Pd/Ti/Pd multilayer stacks deposited on pure Ti and Ti-alloy substrates

    Get PDF
    Pd(50 nm)/Ti(25 nm)/Pd(50 nm) multilayer stack has been deposited on Ti and Ti6Al4V substrates; we have studied the intermixing of layers upon annealing at the hydrogenation temperature of 550 °C, under vacuum, H/Ar gas mixture and pure hydrogen atmospheres. Scanning electron microscopy (SEM) micrographs indicated surface roughening in samples annealed under vacuum and H/Ar gas mixture while those annealed under pure H2 remained relatively smoother. Rutherford backscattering spectrometry (RBS) revealed intermixing of layers as evidenced by the diffusion of Pd toward the bulk, while XRD indicated the formation of PdTi2 phase in the samples annealed under vacuum and H/Ar gas mixture atmosphere. In-situ, real-time RBS showed that the annealing under pure H2 preserves the integrity of the Pd catalyst. No indication of the PdTi2 formation in the pure H2 annealed samples was observed; instead only the TiH2 phase appeared, indicating the absorption of H into the system

    Electrodeposited CuO thin film for wide linear range photoelectrochemical glucose sensing

    Get PDF
    Cupric oxide (CuO) has been used as a non-enzymatic glucose sensor for decades. However, there is a paucity of publications on bare CuO based photo electrochemical (PEC) glucose detection. In this study, a photo active CuO thin film was electrodeposited onto conductive glass and its band gap was tuned by etching in NH3 solution. A 6 W light-emitting diode (LED) bulb was used as the light source for PEC glucose oxidation. Various physical and electrochemical characterization techniques were used to study the PEC behavior of the CuO thin film electrode during glucose oxidation. The electrochemical oxidation of glucose was found to be an irreversible electron transfer process controlled by diffusion at the electrode surface under illumination and dark conditions. Electrochemical impedance spectroscopy (EIS) confirmed that the charge transfer resistance in the light decreases by several orders of magnitude. Good amperometric performance was obtained for the CuO film with a 4 s response time and negligible interference from other species present in human blood. The as prepared sensor exhibited a remarkable wide linear range up-to 29 mM

    An in ovo investigation into the hepatotoxicity of cadmium and chromium evaluated with light-and transmission electron microscopy and electron energy-loss spectroscopy

    Get PDF
    Excessive agriculture, transport and mining often lead to the contamination of valuable water resources. Communities using this water for drinking, washing, bathing and the irrigation of crops are continuously being exposed to these heavy metals. The most vulnerable is the developing fetus. Cadmium (Cd) and chrome (Cr) were identified as two of the most prevalent heavy metal water contaminants in South Africa. In this study, chicken embryos at the stage of early organogenesis were exposed to a single dosage of 0.430 mM physiological dosage (PD) and 430 mM (£1000 PD) CdCl2, as well as 0.476 mM (PD) and 746 mM (£1000 PD) K2Cr2O7. At day 14, when all organ systems were completely developed, the embryos were terminated and the effect of these metals on liver tissue and cellular morphology was determined with light- and transmission electron microscopy (TEM). The intracellular localization of these metals was determined using electron energy-loss spectroscopy (EELS). With light microscopy, the PD of both Cd and Cr had no effect on liver tissue or cellular morphology. At £1000 PD both Cd and Cr caused sinusoid dilation and tissue necrosis. With TEM analysis, Cd exposed hepatocytes presented with irregular chromatin condensation, ruptured cellular membranes and damaged or absent organelles. In contrast Cr caused only slight mitochondrial damage. EELS revealed the bioaccumulation of Cd and Cr along the cristae of the mitochondria and chromatin of the nuclei.http://www.tandfonline.com/loi/lesa202016-12-01hb201

    Effect of calcination time on the physicochemical properties and photocatalytic performance of carbon and nitrogen co-doped TiO2 nanoparticles

    Get PDF
    The application of highly active nano catalysts in advanced oxidation processes (AOPs) improves the production of non-selective hydroxyl radicals and co-oxidants for complete remediation of polluted water. This study focused on the synthesis and characterisation of a highly active visible light C–N-co-doped TiO2 nano catalyst that we prepared via the sol-gel method and pyrolysed at 350 ◦C for 105 min in an inert atmosphere to prevent combustion of carbon moietie

    Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends

    Get PDF
    This paper presents a detailed study on the role of various annealing treatments on organic poly(3-hexylthiophene) and [6]-phenyl-C61-butyric acid methyl ester blends under different experimental conditions. A combination of analytical tools is used to study the alteration of the phase separation, structure and photovoltaic properties of the P3HT:PCBM blend during the annealing process. Results showed that the thermal annealing yields PCBM ‘‘needle-like’’ crystals and that prolonged heat treatment leads to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM crystals. The substrate annealing method demonstrated an optimal morphology by eradicating and suppressing the formation of fullerene clusters across the film, resulting in longer P3HT fibrils with smaller diameter. Improved optical constants, PL quenching and a decrease in the P3HT optical bad-gap were demonstrated for the substrate annealed films due to the limited diffusion of the PCBM molecules. An effective strategy for determining an optimized morphology through substrate annealing treatment is therefore revealed for improved device efficiency.Web of Scienc

    Hot-wire chemical vapour deposition of carbon Nanotubes

    Get PDF
    Magister Scientiae - MScIn this study we report on the effect of the deposition parameters on the morphology and structural properties of CNTs, synthesized by means of the hot-wire chemical vapour deposition technique. SEM, Raman and XRD results show that the optimum deposition conditions for the HWCVD synthesis of aligned MWCNTs, with diameters between 50 and 150 nm and lengths in the micrometer range are: Furnace temperature of 500 ºC, deposition pressure between 150 and 200 Torr, methane/hydrogen dilution of 0.67 and a substrateto- filament distance of 10 cm.South Afric
    corecore