11,512 research outputs found

    Laser-induced thermal acoustics: simple accurate gas measurements

    Get PDF
    Laser-induced thermal acoustics (LITA), an optical four-wave mixing technique, has been used for sensitive measurement of the sound speed, thermal diffusivity, acoustic damping rate, and complex susceptibility of a gas. In LITA, laser-induced acoustic waves scatter laser light into a coherent, modulated signal beam. A simple expression accurately describes the signal. Atmospheric sound speeds accurate to 0.5% and transport properties accurate to 30% have been measured in a single shot without calibration. LITA spectra have been taken of weak spectral lines of NO2 in concentrations of less than 50 parts in 10^9. Signal reflectivities up to 10^4 are estimated

    Laser-induced thermal acoustics (LITA) signals from finite beams

    Get PDF
    Laser-induced thermal acoustics (LITA) is a four-wave mixing technique that may be employed to measure sound speeds, transport properties, velocities, and susceptibilities of fluids. It is particularly effective in high-pressure gases (>1 bar). An analytical expression for LITA signals is derived by the use of linearized equations of hydrodynamics and light scattering. This analysis, which includes full finite-beam-size effects and the optoacoustic effects of thermalization and electrostriction, predicts the amplitude and the time history of narrow-band time-resolved LITA and broadband spectrally resolved (multiplex) LITA signals. The time behavior of the detected LITA signal depends significantly on the detection solid angle, with implications for the measurement of diffusivities by the use of LITA and the proper physical picture of LITA scattering. This and other elements of the physics of LITA that emerge from the analysis are discussed. Theoretical signals are compared with experimental LITA data

    The Effect of a Simple Throat Distortion on the Downstream Flow in a Hypersonic Wind Tunnel Nozzle

    Get PDF
    An experimental investigation was conducted in the GALCIT 2 1/2" Supersonic Wind Tunnel to determine the effect of a known distortion of the throat section of a hyper sonic nozzle on the flow in the region downstream from the throat. The flow in the nozzle with a rectangular throat section was compared with the flow in the same nozzle with the throat region distorted to produce a throat height which varied linearly across the throat section. The flow was investigated by means of Pitot pressure surveys in the horizontal plane of symmetry of the undistorted nozzle. The magnitude of the effect produced by the throat distortion was observed to be approximately that predicted by one-dimensional isentropic flow relations. However, the sign of the effect was reversed in about the distance required for a curved Mach line to cross the channel

    Transient intensity changes of cosmic rays beyond the heliospheric termination shock as observed at Voyager 1

    Get PDF
    This paper continues our studies of temporal variations of cosmic rays beyond the heliospheric termination shock (HTS) using Voyager 1 (V1) data when V1 was beyond 94 AU. This new study utilizes cosmic ray protons and electrons of several energies. Notable transient decreases of 5–50% are observed in galactic cosmic ray nuclei and electrons at V1 shortly after similar decreases are observed at Voyager 2 (V2) still inside the HTS. These decreases at V1 appear to be related to the large solar events in September 2005 and December 2006 and the resulting outward moving interplanetary shock. These two large interplanetary shocks were the largest observed at V2 after V1 crossed the HTS at the end of 2004. They were observed at V2 just inside the HTS at 2006.16 and 2007.43 providing timing markers for V1. From the timing of the intensity decreases observed at V1 as the shocks first reach the HTS and then later reach V1 itself, we can estimate the shock speed beyond the HTS to be between 240 and 300 km s^(−1) in both cases. From the timing of the decreases observed when the shock first reaches the HTS and then several months later encounters the heliopause, we can estimate the heliosheath thickness to be 31 ± 4 and 37 ± 6 AU, respectively, for the two sequences of three decreases seen at V1. These values, along with the distances to the HTS that are determined, give distances from the Sun to the heliopause of 121 ± 4 and 124 ± 6 AU, respectively

    At Voyager 1 Starting on about August 25, 2012 at a Distance of 121.7 AU From the Sun, a Sudden Disappearance of Anomalous Cosmic Rays and an Unusually Large Sudden Increase of Galactic Cosmic Ray H and He Nuclei and Electron Occurred

    Get PDF
    At the Voyager 1 spacecraft in the outer heliosphere, after a series of complex intensity changes starting at about May 8th, the intensities of both anomalous cosmic rays (ACR) and galactic cosmic rays (GCR) changed suddenly and decisively on August 25th (121.7 AU from the Sun). The ACR started the intensity decrease with an initial e-folding rate of intensity decrease of ~1 day. Within a matter of a few days, the intensity of 1.9-2.7 MeV protons and helium nuclei had decreased to less than 0.1 of their previous value and after a few weeks, corresponding to the outward movement of V1 by ~0.1 AU, these intensities had decreased by factors of at least 300-500 and are now lower than most estimates of the GCR spectrum for these lower energies and also at higher energies. The decrease was accompanied by large rigidity dependent anisotropies in addition to the extraordinary rapidity of the intensity changes. Also on August 25th the GCR protons, helium and heavier nuclei as well as electrons increased suddenly with the intensities of electrons reaching levels ~30-50% higher than observed just one day earlier. This increase for GCR occurred over ~1 day for the lowest rigidity electrons, and several days for the higher rigidity nuclei of rigidity ~0.5-1.0 GV. After reaching these higher levels the intensities of the GCR of all energies from 2 to 400 MeV have remained essentially constant with intensity levels and spectra that may represent the local GCR. These intensity changes will be presented in more detail in this, and future articles, as this story unfolds.Comment: 13 Pages, 5 Figure

    The Intensities of Cosmic Ray H and He Nuclei at ~250 MeV/nuc Measured by Voyagers 1 and 2 - Using these Intensities to Determine the Solar Modulation Parameter in the Inner Heliosphere and the Heliosheath Over a 40 Year Time Period

    Get PDF
    We have determined the solar modulation potential, phi, vs. time that is observed at Voyager 1 and 2 from measurements of the H and He nuclei intensities at a common energy of 250 MeVnuc. The H nuclei have a rigidity 0.7 GV, the He nuclei 1.4 GV. These measurements cover a 40 year time period, which includes almost 4 cycles of solar 11 year sunspot variations, throughout the inner heliosphere out to the HTS at distances of 95 AU and 85 AU, respectively at V1 and V2, and then beyond in the heliosheath. Inside the HTS the modulation potential vs. time curves at V1 and V2 show a very similar temporal structure to those observed at the Earth. During a later period of maximum solar modulation from 2000.0 to 2005.0 when V1 and V2 are in the outer heliosphere between 60-94 AU, the main temporal features of the modulation potential curves at all 3 locations match up with appropriate time delays at V1 and V2 if it is assumed that spatially coherent structures are moving outward past V1 and V2, with outward speeds of up to 700 Kms negative 1. After 2004.0 V1 and V2 are at latitudes of positive 35 and negative 30 respectively, placing lower limits on the latitude extent of these structures. Beyond the HTS in the heliosheath the modulation potential slowly decreases at both spacecraft with only a weak evidence of the unusual modulation minimum observed at the Earth in 2009, for example. A sudden decrease of the modulation potential 50 MV for both H and He nuclei occurs at V1 just before the heliopause crossing at about 122 AU. This decrease has not yet been observed at V2, which is now at 113 AU and still observing a modulation potential 60 MV.Comment: 28 pages, 9 Figure

    Termination shock particle spectral features

    Get PDF
    Spectral features of energetic H ions accelerated at the termination shock may be evidence of two components. At low energies the energy spectrum is ~E^(–1.55), with break at ~0.4 MeV to E^(–2.2). A second component appears above ~1 MeV with a spectrum of E^(–1.27) with a break at ~3.2 MeV. Even though the intensities upstream are highly variable, the same spectral break energies are observed, suggesting that these are durable features of the source spectrum. The acceleration processes for the two components may differ, with the lower energy component serving as the injection source for diffusive shock acceleration of the higher energy component. Alternatively, the spectral features may result from the energy dependence of the diffusion tensor that affects the threshold for diffusive shock acceleration

    Voyager observations of galactic and anomalous cosmic rays in the helioshealth

    Get PDF
    Anomalous cosmic rays display large temporal variations at the time and location where Voyager 1 (V1) crossed the heliospheric termination shock (2004.86) (94AU, 34°N). On a short time scale (3 months) there was a large decrease produced by a series of merged interaction regions (MIR), the first of which was associated with the intense Oct./Nov. 2003 solar events. On a longer time scale there is a remarkable correlation between changes in the galactic cosmic ray (GCR) intensity and those of 10–56 MeV/n ACR He and 30–56 MeV H extending over a 4.3 year period with the GCRs exhibiting their expected behavior over this part of the 11 and 22 year solar activity and heliomagnetic cycle. The relative changes in the ACR and GCR are the same for both the short term and long term variations. The comparative V1/V2 ACR and GCR spectra in the foreshock and heliosheath indicate that at this time most of the higher energy ACRs are not being accelerated near V1 but must have their source region elsewhere — possibly near the equatorial region of the TS as was suggested in our first paper on the TS crossing (1)

    The Field White Dwarf Mass Distribution

    Get PDF
    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50% the number of massive white dwarfs (M > 0.75 Msun) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.Comment: 15 pages, 16 figures, accepted for publication in MNRA

    Selecting Metrics to Evaluate Human Supervisory Control Applications

    Get PDF
    The goal of this research is to develop a methodology to select supervisory control metrics. This methodology is based on cost-benefit analyses and generic metric classes. In the context of this research, a metric class is defined as the set of metrics that quantify a certain aspect or component of a system. Generic metric classes are developed because metrics are mission-specific, but metric classes are generalizable across different missions. Cost-benefit analyses are utilized because each metric set has advantages, limitations, and costs, thus the added value of different sets for a given context can be calculated to select the set that maximizes value and minimizes costs. This report summarizes the findings of the first part of this research effort that has focused on developing a supervisory control metric taxonomy that defines generic metric classes and categorizes existing metrics. Future research will focus on applying cost benefit analysis methodologies to metric selection. Five main metric classes have been identified that apply to supervisory control teams composed of humans and autonomous platforms: mission effectiveness, autonomous platform behavior efficiency, human behavior efficiency, human behavior precursors, and collaborative metrics. Mission effectiveness measures how well the mission goals are achieved. Autonomous platform and human behavior efficiency measure the actions and decisions made by the humans and the automation that compose the team. Human behavior precursors measure human initial state, including certain attitudes and cognitive constructs that can be the cause of and drive a given behavior. Collaborative metrics address three different aspects of collaboration: collaboration between the human and the autonomous platform he is controlling, collaboration among humans that compose the team, and autonomous collaboration among platforms. These five metric classes have been populated with metrics and measuring techniques from the existing literature. Which specific metrics should be used to evaluate a system will depend on many factors, but as a rule-of-thumb, we propose that at a minimum, one metric from each class should be used to provide a multi-dimensional assessment of the human-automation team. To determine what the impact on our research has been by not following such a principled approach, we evaluated recent large-scale supervisory control experiments conducted in the MIT Humans and Automation Laboratory. The results show that prior to adapting this metric classification approach, we were fairly consistent in measuring mission effectiveness and human behavior through such metrics as reaction times and decision accuracies. However, despite our supervisory control focus, we were remiss in gathering attention allocation metrics and collaboration metrics, and we often gathered too many correlated metrics that were redundant and wasteful. This meta-analysis of our experimental shortcomings reflect those in the general research population in that we tended to gravitate to popular metrics that are relatively easy to gather, without a clear understanding of exactly what aspect of the systems we were measuring and how the various metrics informed an overall research question
    • …
    corecore