374 research outputs found
Mathematics of random growing interfaces
We establish a thermodynamic limit and Gaussian fluctuations for the height
and surface width of the random interface formed by the deposition of particles
on surfaces. The results hold for the standard ballistic deposition model as
well as the surface relaxation model in the off-lattice setting. The results
are proved with the aid of general limit theorems for stabilizing functionals
of marked Poisson point processes.Comment: 12 page
Fragility and hysteretic creep in frictional granular jamming
The granular jamming transition is experimentally investigated in a
two-dimensional system of frictional, bi-dispersed disks subject to
quasi-static, uniaxial compression at zero granular temperature. Currently
accepted results show the jamming transition occurs at a critical packing
fraction . In contrast, we observe the first compression cycle exhibits
{\it fragility} - metastable configuration with simultaneous jammed and
un-jammed clusters - over a small interval in packing fraction (). The fragile state separates the two conditions that define
with an exponential rise in pressure starting at and an exponential
fall in disk displacements ending at . The results are explained
through a percolation mechanism of stressed contacts where cluster growth
exhibits strong spatial correlation with disk displacements. Measurements with
several disk materials of varying elastic moduli and friction coefficients
, show friction directly controls the start of the fragile state, but
indirectly controls the exponential slope. Additionally, we experimentally
confirm recent predictions relating the dependence of on . Under
repetitive loading (compression), the system exhibits hysteresis in pressure,
and the onset increases slowly with repetition number. This friction
induced hysteretic creep is interpreted as the granular pack's evolution from a
metastable to an eventual structurally stable configuration. It is shown to
depend upon the quasi-static step size which provides the only
perturbative mechanism in the experimental protocol, and the friction
coefficient which acts to stabilize the pack.Comment: 12 pages, 10 figure
Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids
We study both experimentally and theoretically the rheological behavior of
isotropic bidisperse suspensions of noncolloidal particles in yield stress
fluids. We focus on materials in which noncolloidal particles interact with the
suspending fluid only through hydrodynamical interactions. We observe that both
the elastic modulus and yield stress of bidisperse suspensions are lower than
those of monodisperse suspensions of same solid volume fraction. Moreover, we
show that the dimensionless yield stress of such suspensions is linked to their
dimensionless elastic modulus and to their solid volume fraction through the
simple equation of Chateau et al.[J. rheol. 52, 489-506 (2008)]. We also show
that the effect of the particle size heterogeneity can be described by means of
a packing model developed to estimate random loose packing of assemblies of dry
particles. All these observations finally allow us to propose simple closed
form estimates for both the elastic modulus and the yield stress of bidisperse
suspensions: while the elastic modulus is a function of the reduced volume
fraction only, where is the estimated random loose
packing, the yield stress is a function of both the volume fraction and
the reduced volume fraction
Study of Optimal Perimetric Testing In Children (OPTIC): Development and feasibility of the kinetic perimetry reliability measure (KPRM)
INTRODUCTION: Interpretation of perimetric findings, particularly in children, relies on accurate assessment of test reliability, yet no objective measures of reliability exist for kinetic perimetry. We developed the kinetic perimetry reliability measure (KPRM), a quantitative measure of perimetric test reproducibility/reliability and report here its feasibility and association with subjective assessment of reliability. METHODS: Children aged 5-15 years, without an ophthalmic condition that affects the visual field, were recruited from Moorfields Eye Hospital and underwent Goldmann perimetry as part of a wider research programme on perimetry in children. Subjects were tested with two isopters and the blind spot was plotted, followed by a KPRM. Test reliability was also scored qualitatively using our examiner-based assessment of reliability (EBAR) scoring system, which standardises the conventional clinical approach to assessing test quality. The relationship between KPRM and EBAR was examined to explore the use of KPRM in assessing reliability of kinetic fields. RESULTS: A total of 103 children (median age 8.9 years; IQR: 7.1 to 11.8 years) underwent Goldmann perimetry with KPRM and EBAR scoring. A KPRM was achieved by all children. KPRM values increased with reducing test quality (Kruskal-Wallis, p=0.005), indicating greater testretest variability, and reduced with age (linear regression, p=0.015). One of 103 children (0.97%) demonstrated discordance between EBAR and KPRM. CONCLUSION: KPRM and EBAR are distinct but complementary approaches. Though scores show excellent agreement, KPRM is able to quantify withintest variability, providing data not captured by subjective assessment. Thus, we suggest combining KPRM with EBAR to aid interpretation of kinetic perimetry test reliability in children
Frictionless bead packs have macroscopic friction, but no dilatancy
The statement of the title is shown by numerical simulation of homogeneously
sheared packings of frictionless, nearly rigid beads in the quasistatic limit.
Results coincide for steady flows at constant shear rate γ in the
limit of small γ and static approaches, in which packings are equilibrated
under growing deviator stresses. The internal friction angle ϕ, equal to
5.76 0.22 degrees in simple shear, is independent on the average pressure
P in the rigid limit. It is shown to stem from the ability of stable
frictionless contact networks to form stress-induced anisotropic fabrics. No
enduring strain localization is observed. Dissipation at the macroscopic level
results from repeated network rearrangements, like the effective friction
of a frictionless slider on a bumpy surface. Solid fraction Φ remains
equal to the random close packing value ≃ 0.64 in slowly or statically
sheared systems. Fluctuations of stresses and volume are observed to regress in
the large system limit, and we conclude that the same friction law for simple
shear applies in the large psystem limit if normal stress or density is
externally controlled. Defining the inertia number as I = γ m/(aP),
with m the grain mass and a its diameter, both internal friction
coefficient ∗ = tan ϕ and volume 1/Φ increase as
powers of I in the quasistatic limit of vanishing I, in which all mechanical
properties are determined by contact network geometry. The microstructure of
the sheared material is characterized with a suitable parametrization of the
fabric tensor and measurements of connectivity and coordination numbers
associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v
Recommended from our members
A Method for Monitoring Deposition at a Solid Cathode in an Electrorefiner for a Two-Species System Using Electrode Potentials
Currently, process monitoring of spent nuclear fuel electrorefining relies upon sampling and destructive analysis methods coupled with extrapolative thermodynamic process models for non-interrupted operations. Corrections to those models are performed infrequently, jeopardizing both the control of the process and safeguarding of nuclear material. Furthermore, the timeliness of obtaining the results is inadequate for application of international safeguards protocol. Alternatively, a system that dynamically utilizes electrical data such as electrode potentials and cell current can hypothetically be used to achieve real-time process monitoring and more robust control as well as improved safeguards. Efforts to develop an advanced model of the electrorefiner to date have focused on a forward modeling approach by using feed and salt compositions to determine the product composition, cell current and electrode potential response. Alternatively, an inverse model was developed, and reported here, to predict the product deposition rates on a cathode using the cell current, cathode potential, and fundamental relations of electrochemistry. The model was applied to the following cases: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. The deposition rates predicted by the inverse model were compared to those of a forward model, ERAD
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks
This is the first paper of a series of three, reporting on numerical
simulation studies of geometric and mechanical properties of static assemblies
of spherical beads under an isotropic pressure. Frictionless systems assemble
in the unique random close packing (RCP) state in the low pressure limit if the
compression process is fast enough, slower processes inducing traces of
crystallization, and exhibit specific properties directly related to
isostaticity of the force-carrying structure. The different structures of
frictional packings assembled by various methods cannot be classified by the
sole density. While lubricated systems approach RCP densities and coordination
number z^*~=6 on the backbone in the rigid limit, an idealized "vibration"
procedure results in equally dense configurations with z^*~=4.5. Near neighbor
correlations on various scales are computed and compared to available
laboratory data, although z^* values remain experimentally inaccessible. Low
coordination packings have many rattlers (more than 10% of the grains carry no
force), which should be accounted for on studying position correlations, and a
small proportion of harmless "floppy modes" associated with divalent grains.
Frictional packings, however slowly assembled under low pressure, retain a
finite level of force indeterminacy, except in the limit of infinite friction.Comment: 29 pages. Published in Physical Review
Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime
Numerical simulations are used to study how fiber supercontinuum generation
seeded by picosecond pulses can be actively controlled through the use of input
pulse modulation. By carrying out multiple simulations in the presence of
noise, we show how tailored supercontinuum Spectra with increased bandwidth and
improved stability can be generated using an input envelope modulation of
appropriate frequency and depth. The results are discussed in terms of the
non-linear propagation dynamics and pump depletion.Comment: Aspects of this work were presented in Paper ThJ2 at OECC/ACOFT 2008,
Sydney Australia 7-10 July (2008). Journal paper submitted for publication 30
July 200
- …