744 research outputs found
Investigation of genetic determinants of cognitive change in later life
Cognitive decline is a major health concern and identification of genes that may serve as drug targets to slow decline is important to adequately support an aging population. Whilst genetic studies of cross-sectional cognition have been carried out, cognitive change is less well-understood. Here, using data from the TOMMORROW trial, we investigate genetic associations with cognitive change in a cognitively normal older cohort. We conducted a genome-wide association study of trajectories of repeated cognitive measures (using generalised estimating equation (GEE) modelling) and tested associations with polygenic risk scores (PRS) of potential risk factors. We identified two genetic variants associated with change in attention domain scores, rs534221751 (p = 1 Γ 10β8 with slope 1) and rs34743896 (p = 5 Γ 10β10 with slope 2), implicating NCAM2 and CRIPT/ATP6V1E2 genes, respectively. We also found evidence for the association between an education PRS and baseline cognition (at >65 years of age), particularly in the language domain. We demonstrate the feasibility of conducting GWAS of cognitive change using GEE modelling and our results suggest that there may be novel genetic associations for cognitive change that have not previously been associated with cross-sectional cognition. We also show the importance of the education PRS on cognition much later in life. These findings warrant further investigation and demonstrate the potential value of using trial data and trajectory modelling to identify genetic variants associated with cognitive change
Owyhee Russet: AVariety with High Yields of U.S. No. 1 Tubers, Excellent Processing Quality, and Moderate Resistance to Fusarium Dry Rot (\u3ci\u3eFusarium solani var. coeruleum\u3c/i\u3e)
Owyhee Russet (AO96160-3) originated from a cross between A89384-10 and A89512-3 in 1996. Owyhee Russet was released in 2009 by Oregon State University, in cooperation with the USDA-ARS and the Agricultural Experiment Stations of Idaho and Washington and is a product of the Northwest Potato Variety (Tri-State) Development Program. Owyhee Russet has semi-erect medium sized vines with medium to late maturity. The tubers are long, with a tan skin, medium russeting, and attractive tuber appearance for fresh market. Owyhee Russet was evaluated in several locations across the Northwest for more than 15 years. Total yield of Owyhee Russet is similar to that of Russet Burbank and Ranger Russet but significantly higher than Russet Norkotah. U.S. No.1 tuber yield of Owyhee Russet is significantly higher than Russet Burbank and Russet Norkotah, resulting in substantially higher marketable yield. Owyhee Russet tubers have significantly higher specific gravity than Russet Burbank and Russet Norkotah. Fry color following tuber storage at 4Β°C and 9Β°C is significantly lighter for Owyhee Russet than the comparison varieties. Relative strengths include high yield with a very high proportion of U.S. No.1 tubers, good tuber appearance and excellent processing quality, resistance to cold sweetening, common scab and Fusarium dry rot. Weaknesses include susceptibility to foliar and tuber late blight and susceptibility to metribuzin herbicide injury. Allelic patterns of five SSR markers have shown that Owyhee Russet has a distinctive DNA genetic fingerprint from its russet type reference varieties which are Ranger Russet, Russet Burbank, and Russet Norkotah
COMPUTER-CONTROLLED GAS CHROMATOGRAPH CAPABLE OF ''REAL-TIME'' READOUT OF HIGH-PRECISION DATA.
A gas chromatograph has been assembled which provides computer control of sample injection, column temperature, and flow rate, plus direct computer readout of inlet pressure, mass flow rate, and detector response. Data processing yields, in real-time, a standard deviation of less than 0.05% in retention time, which is comparable to previous results obtained using an off-line computer. However, corrected retention volumes determined in real-time had a standard deviation of about 0.4% which reflected primarily the uncertainty in flow measurement
Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis
Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na+/H+ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH
Products of cultured neuroglial cells: II. The production of fibronectin by C6 glioma cells
The possibility of fibronectin production by C6 glioma cells was examined with assays which require protein synthesis. Proteins produced by C6 cells using radiolabeled amino acid precursors were tested for affinity to collagen by binding to immobilized gelatin. The predominant collagen binding protein made by C6 coelectrophoresed with fibronectin synthesized by control fibroblasts and with the larger of the two proteins in unlabeled fibronectin when applied to polyacrylamide gels with sodium dodecyl sulfate (SDS). In addition, C6 produced a larger collagen binding protein of approximately 270,000 molecular weight. Solubilities in urea solutions of the collagen-binding proteins made by C6 cells and fibroblasts were similar. Immunofluorescence showed fibronectin associated with the C6 cell monolayer, but less abundant than the fibronectin associated with fibroblasts. Results provide evidence for the production of fibronectin by the C6 glioma cell line.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45400/1/11064_2004_Article_BF00964399.pd
Early parenting intervention: Family risk and first-time parenting related to intervention effectiveness
The effects of cumulative risk and parity on the effectiveness of a home based parenting intervention were tested in a randomized controlled trial with 237 families with 1- to 3-year-old children screened for high levels of externalizing behavior. The intervention was aimed at enhancing positive parenting and decreasing externalizing behaviors. The results showed that cumulative risk was not associated with either change in child externalizing behaviors or change in positive parenting. When intervention effectiveness was compared for primiparas (i.e., first-time mothers) versus multiparas (i.e., mothers with more than one child), we found that intervention mothers of first-born children displayed an increase in their use of positive discipline strategies as compared to first-time mothers in the control group, whereas a similar effect for multiparas was absent. Among multiparas we found an intervention effect on sensitivity, with control group mothers showing an increase in sensitivity, whereas the intervention group showed a constant level of sensitivity over time. These results suggest that parity may be a moderator of intervention effectiveness. Implications for investigating moderators of intervention effectiveness are discussed. Β© 2007 Springer Science+Business Media, LLC
Essential Roles for Soluble Virion-Associated Heparan Sulfonated Proteoglycans and Growth Factors in Human Papillomavirus Infections
A subset of human papillomavirus (HPV) infections is causally related to the development of human epithelial tumors and cancers. Like a number of pathogens, HPV entry into target cells is initiated by first binding to heparan sulfonated proteoglycan (HSPG) cell surface attachment factors. The virus must then move to distinct secondary receptors, which are responsible for particle internalization. Despite intensive investigation, the mechanism of HPV movement to and the nature of the secondary receptors have been unclear. We report that HPV16 particles are not liberated from bound HSPG attachment factors by dissociation, but rather are released by a process previously unreported for pathogen-host cell interactions. Virus particles reside in infectious soluble high molecular weight complexes with HSPG, including syndecan-1 and bioactive compounds, like growth factors. Matrix mellatoproteinase inhibitors that block HSPG and virus release from cells interfere with virus infection. Employing a co-culture assay, we demonstrate HPV associated with soluble HSPG-growth factor complexes can infect cells lacking HSPG. Interaction of HPV-HSPG-growth factor complexes with growth factor receptors leads to rapid activation of signaling pathways important for infection, whereas a variety of growth factor receptor inhibitors impede virus-induced signaling and infection. Depletion of syndecan-1 or epidermal growth factor and removal of serum factors reduce infection, while replenishment of growth factors restores infection. Our findings support an infection model whereby HPV usurps normal host mechanisms for presenting growth factors to cells via soluble HSPG complexes as a novel method for interacting with entry receptors independent of direct virus-cell receptor interactions
Target Cell Cyclophilins Facilitate Human Papillomavirus Type 16 Infection
Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPVβinduced diseases
- β¦