113 research outputs found

    Aperiodic tilings and entropy

    Full text link
    In this paper we present a construction of Kari-Culik aperiodic tile set - the smallest known until now. With the help of this construction, we prove that this tileset has positive entropy. We also explain why this result was not expected

    Finite automata for caching in matrix product algorithms

    Full text link
    A diagram is introduced for visualizing matrix product states which makes transparent a connection between matrix product factorizations of states and operators, and complex weighted finite state automata. It is then shown how one can proceed in the opposite direction: writing an automaton that ``generates'' an operator gives one an immediate matrix product factorization of it. Matrix product factorizations have the advantage of reducing the cost of computing expectation values by facilitating caching of intermediate calculations. Thus our connection to complex weighted finite state automata yields insight into what allows for efficient caching in matrix product algorithms. Finally, these techniques are generalized to the case of multiple dimensions.Comment: 18 pages, 19 figures, LaTeX; numerous improvements have been made to the manuscript in response to referee feedbac

    Sofic-Dyck shifts

    Full text link
    We define the class of sofic-Dyck shifts which extends the class of Markov-Dyck shifts introduced by Inoue, Krieger and Matsumoto. Sofic-Dyck shifts are shifts of sequences whose finite factors form unambiguous context-free languages. We show that they correspond exactly to the class of shifts of sequences whose sets of factors are visibly pushdown languages. We give an expression of the zeta function of a sofic-Dyck shift

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    On the Dual Post Correspondence Problem

    Get PDF
    The Dual Post Correspondence Problem asks whether, for a given word α, there exists a pair of distinct morphisms σ,τ, one of which needs to be non-periodic, such that σ(α) = τ(α) is satisfied. This problem is important for the research on equality sets, which are a vital concept in the theory of computation, as it helps to identify words that are in trivial equality sets only. Little is known about the Dual PCP for words α over larger than binary alphabets, especially for so-called ratio-primitive examples. In the present paper, we address this question in a way that simplifies the usual method, which means that we can reduce the intricacy of the word equations involved in dealing with the Dual PCP. Our approach yields large sets of words for which there exists a solution to the Dual PCP as well as examples of words over arbitrary alphabets for which such a solution does not exist

    Complexity of Generic Limit Sets of Cellular Automata

    Full text link
    The generic limit set of a topological dynamical system of the smallest closed subset of the phase space that has a comeager realm of attraction. It intuitively captures the asymptotic dynamics of almost all initial conditions. It was defined by Milnor and studied in the context of cellular automata, whose generic limit sets are subshifts, by Djenaoui and Guillon. In this article we study the structural and computational restrictions that apply to generic limit sets of cellular automata. As our main result, we show that the language of a generic limit set can be at most Σ30\Sigma^0_3-hard, and lower in various special cases. We also prove a structural restriction on generic limit sets with a global period.Comment: 13 pages, 2 figure

    A new proof for the decidability of D0L ultimate periodicity

    Full text link
    We give a new proof for the decidability of the D0L ultimate periodicity problem based on the decidability of p-periodicity of morphic words adapted to the approach of Harju and Linna.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Quasiperiodicity and non-computability in tilings

    Full text link
    We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any effectively closed set can be recursively transformed into a tile set so that the Turing degrees of the resulted tilings consists exactly of the upper cone based on the Turing degrees of the later.Comment: v3: the version accepted to MFCS 201

    Stability and Complexity of Minimising Probabilistic Automata

    Full text link
    We consider the state-minimisation problem for weighted and probabilistic automata. We provide a numerically stable polynomial-time minimisation algorithm for weighted automata, with guaranteed bounds on the numerical error when run with floating-point arithmetic. Our algorithm can also be used for "lossy" minimisation with bounded error. We show an application in image compression. In the second part of the paper we study the complexity of the minimisation problem for probabilistic automata. We prove that the problem is NP-hard and in PSPACE, improving a recent EXPTIME-result.Comment: This is the full version of an ICALP'14 pape

    Parametric ordering of complex systems

    Get PDF
    Cellular automata (CA) dynamics are ordered in terms of two global parameters, computable {\sl a priori} from the description of rules. While one of them (activity) has been used before, the second one is new; it estimates the average sensitivity of rules to small configurational changes. For two well-known families of rules, the Wolfram complexity Classes cluster satisfactorily. The observed simultaneous occurrence of sharp and smooth transitions from ordered to disordered dynamics in CA can be explained with the two-parameter diagram
    corecore