2 research outputs found

    Spin dependent recombination based magnetic resonance spectroscopy of bismuth donor spins in silicon at low magnetic fields

    Full text link
    Low-field (6-110 mT) magnetic resonance of bismuth (Bi) donors in silicon has been observed by monitoring the change in photoconductivity induced by spin dependent recombination. The spectra at various resonance frequencies show signal intensity distributions drastically different from that observed in conventional electron paramagnetic resonance, attributed to different recombination rates for the forty possible combinations of spin states of a pair of a Bi donor and a paramagnetic recombination center. An excellent tunability of Bi excitation energy for the future coupling with superconducting flux qubits at low fields has been demonstrated.Comment: 5 pages, 4 figure

    Hyperfine clock transitions of bismuth donors in silicon detected by spin-dependent recombination

    Get PDF
    Bismuth donors ion-implanted in 28Si and natSi are studied using magnetic resonance spectroscopy based on spin-dependent recombination. The hyperfine clock transition, at which the linewidth is significantly narrowed, is observed for the bismuth donors. The experimental results are modeled quantitatively by molecular orbital theory for a coupled pair consisting of a bismuth donor and a spin-dependent recombination readout center, including the effect of hyperfine and Zeeman interactions
    corecore