7 research outputs found

    γ-Secretase Inhibitor Alleviates Acute Airway Inflammation of Allergic Asthma in Mice by Downregulating Th17 Cell Differentiation

    Get PDF
    T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. Th17 cell differentiation requires Notch signaling. γ-Secretase inhibitor (GSI) blocks Notch signaling; thus, it may be considered as a potential treatment for allergic asthma. The aim of this study was to evaluate the effect of GSI on Th17 cell differentiation in a mouse model of allergic asthma. OVA was used to induce mouse asthma model in the presence and absence of GSI. GSI ameliorated the development of OVA-induced asthma, including suppressing airway inflammation responses and reducing the severity of clinical signs. GSI also significantly suppressed Th17-cell responses in spleen and reduced IL-17 levels in serum. These findings suggest that GSI directly regulates Th17 responses through a Notch signaling-dependent pathway in mouse model of allergic asthma, supporting the notion that GSI is a potential therapeutic agent for the treatment of allergic asthma

    γ

    Full text link

    Osthole alleviates food allergy by blocking IL-33/ST2 pathway and targeting ILC2-CD4+T response

    No full text
    Osthole is widely used in medicine because of its anti-oxidative, anti-allergenic and anti-inflammatory. In this study, we explored the protective effects of osthole on food allergenic mice and investigated its potential mechanism of action. We first established a food allergic mouse model by intraperitoneal sensitization and OVA (ovalbumin) oral challenge. Osthole were orally administered before OVA challenge. Diarrhea and allergy scores were used to assess food allergy symptoms. The pathological changes of the intestine were examined by H&E staining and electron microscopy. OVA-IgE, mucosal mast cell protease-1 (mMCP-1), IL-33, ST2, group 2 innate lymphoid cell (ILC2), and regulatory T (Treg) related-cytokine levels were assessed.We found that the oral administration of osthole after OVA sensitization could improve food allergy symptoms and induce beneficial intestinal pathological changes in mice. Osthole reduce the levels of IgE and mMCP-1 and inhibited the IL33/ST2 signaling pathway, thereby blocking ILC2 response and improving Treg response

    Molecular mechanism of interleukin-17A regulating airway epithelial cell ferroptosis based on allergic asthma airway inflammation

    No full text
    Interleukin-17A (IL-17A) levels are elevated in patients with asthma. Ferroptosis has been identified as the non-apoptotic cell death type associated with asthma. Data regarding the relation of ferroptosis with asthma and the effect of IL-17A on modulating ferroptosis in asthma remain largely unclear. The present work focused on investigating the role of IL-17A in allergic asthma-related ferroptosis and its associated molecular mechanisms using public datasets, clinical samples, human bronchial epithelial cells, and an allergic asthma mouse model. We found that IL-17A was significantly upregulated within serum in asthma cases. Adding IL-17A significantly increased ferroptosis within human bronchial epithelial cells (BEAS-2B). In ovalbumin (OVA)-induced allergic asthmatic mice, IL-17A regulated and activated lipid peroxidation induced ferroptosis, whereas IL-17A knockdown effectively inhibited ferroptosis in vivo by protection of airway epithelial cells via the xCT-GSH-GPX4 antioxidant system and reduced airway inflammation. Mouse mRNA sequencing results indicated that the tumor necrosis factor (TNF) pathway was the differential KEGG pathway in the OVA group compared to healthy controls and the OVA group compared to the IL-17A knockout OVA group. We further used N-acetylcysteine (TNF inhibitor) to inhibit the TNF signaling pathway, which was found to protect BEAS-2B cells from IL-17A induced lipid peroxidation and ferroptosis damage. Our findings reveal a novel mechanism for the suppression of ferroptosis in airway epithelial cells, which may represent a new strategy for the use of IL-17A inhibitors against allergic asthma

    DataSheet_1_Allergen immunotherapy combined with Notch pathway inhibitors improves HDM-induced allergic airway inflammation and inhibits ILC2 activation.docx

    No full text
    IntroductionGroup 2 innate lymphoid cells (ILC2s) play a crucial role in house dust mite (HDM)-induced allergic inflammation, and allergen immunotherapy (AIT) holds promise for treating the disease by reducing the frequency of ILC2s. Despite significant progress in AIT for allergic diseases, there remains a need to improve the control of allergic symptoms.MethodsWe investigated the synergistic effect of the Notch signaling pathway and subcutaneous immunotherapy (SCIT) in treating allergic airway inflammation in mice and their impact on the ratio of ILC2s in lung tissues. This was achieved by establishing the HDM-induced airway allergic disorders (HAAD) model and SCIT model. Additionally, we conducted in vitro investigations into the effect of the Notch signaling pathway on the secretory function of activated ILC2s using fluorescence-activated cell sorting. Furthermore, we explored the coactivation of the Notch signaling pathway with SCIT in vitro by sorting ILC2s from the lung tissues of mice after SCIT modeling.ResultsPreviously, our group demonstrated that Notch signaling pathway inhibitors can reduce allergic airway inflammation in mice. Notch signaling induces lineage plasticity of mature ILC2s. In this study, we showed that AIT alleviates allergic airway inflammation and suppresses the frequency of ILC2s induced by HDM. Interestingly, AIT combined with a γ-secretase inhibitor (GSI), an inhibitor of the Notch signaling pathway, significantly inhibited the frequency of ILC2s, reduced airway inflammation, and suppressed Th2-type responses in a mouse model. Furthermore, lung ILC2s from HDM-challenged mice with or without AIT were treated with GSI in vitro, and we found that GSI dramatically reduced the secretion of type 2 inflammatory factors in ILC2s.DiscussionThese findings suggest that Notch signaling pathway inhibitors can be used as adjuvant therapy for AIT and may hold potential treatment value in the cooperative control of allergic airway inflammation during early AIT.</p

    Red Blood Cell Membrane‐Coated Nanoparticles Enable Incompatible Blood Transfusions

    No full text
    Abstract Blood transfusions save lives and improve health every day. Despite the matching of blood types being stricter than it ever has been, emergency transfusions among incompatible blood types are still inevitable in the clinic when there is a lack of acceptable blood types for recipients. Here to overcome this, a counter measure nanoplatform consisting of a polymeric core coated by a red blood cell (RBC) membrane is developed. With A‐type or B‐type RBC membrane camouflaging, the nanoplatform is capable of specifically capturing anti‐A or anti‐B IgM antibodies within B‐type or A‐type whole blood, thereby decreasing the corresponding IgM antibody levels and then allowing the incompatible blood transfusions. In addition to IgM, the anti‐RBC IgG antibody in a passive immunization murine model can likewise be neutralized by this nanoplatform, leading to prolonged circulation time of incompatible donor RBCs. Noteworthily, nanoplatform made by expired RBCs (>42 days stored hypothermically) and then subjected to lyophilization does not impair their effect on antibody neutralization. Most importantly, antibody‐captured RBC‐NP do not exacerbate the risk of inflammation, complement activation, and coagulopathy in an acute hemorrhagic shock murine model. Overall, this biomimetic nanoplatform can safely neutralize the antibody to enable incompatible blood transfusion
    corecore