19 research outputs found

    Aircraft systems architecting: a functional-logical domain perspective

    Get PDF
    Presented is a novel framework for early systems architecture design. The framework defines data structures and algorithms that enable the systems architect to operate interactively and simultaneously in both the functional and logical domains. A prototype software tool, called AirCADia Architect, was implemented, which allowed the framework to be evaluated by practicing aircraft systems architects. The evaluation confirmed that, on the whole, the approach enables the architects to effectively express their creative ideas when synthesizing new architectures while still retaining control over the process

    Impact assessment of design guidelines in the conceptual development of aircraft product architectures

    Get PDF
    The optimization of the assembly phase, in complex products, is a challenging phase and it need to be handled in the early phase of product development (i.e., conceptual design). Several methods have been developed to assess the assemblability of product at the conceptual design phase, however, the most critical aspect concerns the possibility to derive design guidelines starting from the results of assemblability analysis. In this context, the present work aims at defining a methodology able to retrieve design for assembly and installation guidelines starting from the analysis of a given product architecture at the conceptual design phase (loop-back of the design for assembly method). The developed method makes use of matrices and vectors to provide a list of design actions that affect the product assemblability including a ranking of their impacts on the final design. The methodology was used to retrieve and select design guidelines in the context of aircraft manufacturing. The case study (cabin equipping of commercial aircraft) provides interesting results in the identification and implementation of design guidelines to improve the aircraft architecture at the conceptual level

    Conceptual design for assembly in aerospace industry: Sensitivity analysis of mathematical framework and design parameters

    Get PDF
    One of the most challenging activity in the engineering design process is the definition of a framework (model and parameters) for the characterization of specific processes such as installation and assembly. Aircraft system architectures are complex structures used to understand relation among elements (modules) inside an aircraft and its evaluation is one of the first activity since the conceptual design. The assessment of aircraft architectures, from the assembly perspective, requires parameter identification as well as the definition of the overall analysis framework (i.e., mathematical models, equations). The paper aims at the analysis of a mathematical framework (structure, equations and parameters) developed to assess the fit for assembly performances of aircraft system architectures by the mean of sensitivity analysis (One-Factor-At-Time method). The sensitivity analysis was performed on a complex engineering framework, i.e. the Conceptual Design for Assembly (CDfA) methodology, which is characterized by level, domains and attributes (parameters). A commercial aircraft cabin system was used as a case study to understand the use of different mathematical operators as well as the way to cluster attributes

    Definition of value in the framework of systems engineering design methodologies with aeronautics insight

    No full text
    Value is a polysemic word when used in engineering design, suitable to create fully-optimized entities. However, its multifaceted nature can hinder the development of effective design approaches. To address that, this research aimed at systematically reviewing the value definitions found across literature to establish a common theoretical basis for future value-based design methodologies. Considering the importance of value in the aeronautical sector, this research was performed both from a general viewpoint and focusing only on aeronautical papers. The main result achieved is the lack of a general-valid value definition, requiring deeper investigations of every element concurring to generate value

    CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design

    No full text
    This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency

    Design for Assembly in the Conceptual Development of Aircraft Systems

    No full text
    Conceptual design for assembly and installation is a key enabler for the improvement and development of an aircraft and related components. This work attempts to define a design for assembly methodology suitable for the evaluation and architecture design of aircraft systems in the preliminary phases of product development (conceptual design). Three main aspects are covered within this work: (i) the definition of a design framework, (ii) the characterization of suitable parameters driving the assessment and development of product architectures, and (iii) the formalization of internal knowledge for that purpose. The proposed approach has been tested in the assessment and development of an aircraft nose section with positive outcomes in terms of knowledge formalization and robustness of results in relation with the issues retrieved by the analysis of the assembly line. Future works will focus on the methodology optimization including automatic data input and mathematical models refinement

    Conceptual Design for Assembly methodology formalization: systems installation analysis and manufacturing information integration in the design and development of aircraft architectures

    No full text
    In recent years, the air transport market has experienced strong growth, increasing the demand for new civil aircraft, challenging the actual production rate of aerospace industries. The bottleneck of the production for the aviation industry lies in the capability of the manufacturing and assembly facilities to fulfill the module arrangement in the current design. The development of optimized product architecture requires the implementation of design for assembly principles at the conceptual design phase closing the gap between the design and the production departments. The study proposes a Conceptual Design for Assembly (CDfA) methodology which aims at the assessment of aircraft systems installation and assembly at the early phase of product development (conceptual design). The CDfA methodology allows comparing assembly performance of different aircraft architectures identifying critical modules and interfaces as well as assembly/installation issues. The methodology is based on a specific framework (hierarchical structure) which is characterized by levels, domains, and attributes. Levels enable the analysis of product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization). Domains and attributes are defined with a knowledge-based engineering approach considering available information at the conceptual design phase and production criteria. A complex system (the nose fuselage of a commercial aircraft) was chosen as a case study to test the robustness of the methodology in relation to the assembly performance observed within the manufacturing facilities. Results revealed the architectural elements (modules and interfaces) that contribute to inefficient assembly operations, as well as the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency

    A Method to Assess Design for Assembly Efficiency of Aircraft Cabin Concepts

    No full text
    The design for assembly and installation of aircraft systems is a challenging topic to tackle in the conceptual design phase. This paper presents the definition of a Conceptual Design for Assembly (CDfA) methodology for cabin architecture concept of a commercial aircraft. The cabin equipping includes the assembly of many interior components (here called modules) such as toilets, galleys, seats, etc. The method has been developed and experimented on a civil aircraft cabin installation. Results provide interesting insight in the identification of the most complex items to install, enabling to understand, in terms of design, were criticalities lie and where improvements can be implemented. Results highlight how the new cabin architecture design performs better (approximately 23%) than the previous one in terms of assembly, which has been confirmed by the workload measurement performed on the assembly line

    Conceptual design for assembly in aerospace industry: A method to assess manufacturing and assembly aspects of product architectures

    No full text
    In recent years, the air transport market has quickly grown, creating new civil aircrafts demand, challenging the actual production rate of aerospace industries. The bottleneck of the current civil aircrafts production rate lies in the capability of the manufacturing and assembly facilities in relation to the aircrafts architecture design. The aim of this work is to develop a methodology and a related mathematical model that can be used at the conceptual design phase for the assessment of criticalities related to the product assemblability. The methodology allows to recognize modules and/or interfaces which are mostly affecting the assembly time providing a design tool for the comparison and evaluation of product architecture alternatives. A preliminary application has been done on the nose-fuselage of a civil aircraft for passenger transport. The test case provides interesting outcome in the identification of modules and module interfaces which are strongly affecting the assembly phase and required a re-arrangement (new architecture design) for the process improvement

    EXTRAPOLATION of DESIGN GUIDELINES during the CONCEPTUAL DESIGN PHASE: A METHOD to SUPPORT PRODUCT ARCHITECTURE DESIGN

    No full text
    The work aims at the definition of a design methodology able to drive designers in the definition of product architectures, starting from rough information available at the conceptual design. The methodology identifies design guidelines useful for the development of product architectures optimized for a given target (i.e. assembly, cost). The methodology is based on domains which combine attributes related to a specific aspect of the target. The exploratory application of the methodology was performed to address the equipment installation of a civil aircraft for assembly/installation target
    corecore