13 research outputs found

    Evaluation of Real-Time Kinematic Positioning and Deformation Monitoring Using Xiaomi Mi 8 Smartphone

    No full text
    Modern low-cost electronic devices can achieve high precision for global navigation satellite systems (GNSSs) and related applications. Recently, the pseudo-range and carrier phase have been directly obtained from a smartphone to establish a professional-level surveying device. Although promising results have been obtained by linking to an external GNSS antenna, the real-time kinematic (RTK) positioning performance requires further improvement when using the embedded smartphone antenna. We first investigate the observation quality characteristics of the Xiaomi Mi 8 smartphone. The carrier-to-noise-density ratio of L5/E5a signals is below that of L1/E1 signals, and the cycle slip and loss of lock are severe, especially for L5/E5a signals. Therefore, we use an improved stochastic model and ambiguity-resolution strategies to improve the short-baseline RTK positioning accuracy. Experimental results show that the ambiguity fixing rate can reach approximately 90% in 3 h of observations when using the embedded antenna, while the GPS/Galileo/BDS single-frequency combination is more suitable for smartphones. On the other hand, convergence takes 10–30 min, and the RTK positioning accuracy can reach 1 and 2 cm along the horizontal and vertical directions, respectively, if ambiguity is resolved correctly. Moreover, we verify the feasibility of using a mass-produced smartphone for deformation monitoring. Results from a simulated dynamic deformation experiment indicate that a smartphone can recognise deformations as small as 2 cm

    A MATLAB‑based Kriged Kalman Filter software for interpolating missing data in GNSS coordinate time series

    No full text
    GNSS coordinate time series data for permanent reference stations often suffer from random, or even continuous, missing data. Missing data interpolation is necessary due to the fact that some data processing methods require evenly spaced data. Traditional missing data interpolation methods usually use single point time series, without considering spatial correlations between points. We present a MATLAB software for dynamic spatiotemporal interpolation of GNSS missing data based on the Kriged Kalman Filter model. With the graphical user interface, users can load source GNSS data, set parameters, view the interpolated series and save the final results. The SCIGN GPS data indicate that the software is an effective tool for GNSS coordinate time series missing data interpolation

    An enhanced multi-GNSS navigation algorithm by utilising a priori inter-system biases

    No full text
    The integration of multi-constellation Global Navigation Satellite System (GNSS) measurements can effectively improve the accuracy and reliability of navigation and positioning solutions, while the Inter-System Bias (ISB) is a key issue for compatibility. The ISB is traditionally estimated as an unknown parameter along with three-dimensional position coordinates and a receiver clock offset with respect to Global Positioning System (GPS) time. ISB estimation of this sort will sacrifice a satellite observation for each integrated GNSS system. These sacrificed observations could be vital in situations of limited satellite visibility. In this study, an enhanced multi-GNSS navigation algorithm is developed to avoid sacrificing observations under poor visibility conditions. The main idea of this algorithm is to employ a moving average filter to smooth the ISBs estimated at previous epochs. The filtered value is utilised as a priori information at the current epoch. Experimental tests were conducted to evaluate the enhanced algorithm under open and blocked sky conditions. The results show that the enhanced algorithm effectively improves the accuracy and availability of navigation solutions under the blocked sky condition, with performance being comparable to traditional ISB estimation algorithms in open sky conditions. The improvement rates of the three-dimensional position accuracy and availability reach up to 63% and 21% in the blocked sky environment. Even in the case of only four different GNSS satellites, a position solution can still be obtained using the enhanced algorithm

    Estimation of Terrestrial Water Storage Variations in Sichuan-Yunnan Region from GPS Observations Using Independent Component Analysis

    No full text
    GPS can be used to measure land motions induced by mass loading variations on the Earth’s surface. This paper presents an independent component analysis (ICA)-based inversion method that uses vertical GPS coordinate time series to estimate the change of terrestrial water storage (TWS) in the Sichuan-Yunnan region in China. The ICA method was applied to extract the hydrological deformation signals from the vertical coordinate time series of GPS stations in the Sichuan-Yunnan region from the Crustal Movement Observation Network of China (CMONC). These vertical deformation signals were then inverted to TWS variations. Comparative experiments were conducted based on Gravity Recovery and Climate Experiment (GRACE) data and a hydrological model for validation. The results demonstrate that the TWS changes estimated from GPS(ICA) deformations are highly correlated with the water variations derived from the GRACE data and hydrological model in Sichuan-Yunnan region. The TWS variations are overestimated by the vertical GPS observations the northwestern Sichuan-Yunnan region. The anomalies are likely caused by inaccurate atmospheric loading correction models or residual tropospheric errors in the region with high topographic variability and can be reduced by ICA preprocessing

    Estimation of Terrestrial Water Storage Variations in Sichuan-Yunnan Region from GPS Observations Using Independent Component Analysis

    No full text
    GPS can be used to measure land motions induced by mass loading variations on the Earth’s surface. This paper presents an independent component analysis (ICA)-based inversion method that uses vertical GPS coordinate time series to estimate the change of terrestrial water storage (TWS) in the Sichuan-Yunnan region in China. The ICA method was applied to extract the hydrological deformation signals from the vertical coordinate time series of GPS stations in the Sichuan-Yunnan region from the Crustal Movement Observation Network of China (CMONC). These vertical deformation signals were then inverted to TWS variations. Comparative experiments were conducted based on Gravity Recovery and Climate Experiment (GRACE) data and a hydrological model for validation. The results demonstrate that the TWS changes estimated from GPS(ICA) deformations are highly correlated with the water variations derived from the GRACE data and hydrological model in Sichuan-Yunnan region. The TWS variations are overestimated by the vertical GPS observations the northwestern Sichuan-Yunnan region. The anomalies are likely caused by inaccurate atmospheric loading correction models or residual tropospheric errors in the region with high topographic variability and can be reduced by ICA preprocessing

    Potential Contributors to Common Mode Error in Array GPS Displacement Fields in Taiwan Island

    No full text
    The existence of the common mode error (CME) in the continuous global navigation satellite system (GNSS) coordinate time series affects geophysical studies that use GNSS observations. To understand the potential contributors of CME in GNSS networks in Taiwan and their effect on velocity estimations, we used the principal component analysis (PCA) and independent component analysis (ICA) to filter the vertical coordinate time series from 44 high-quality GNSS stations in Taiwan island in China, with a span of 10 years. The filtering effects have been evaluated and the potential causes of the CME are analyzed. The root-mean-square values decreased by approximately 14% and 17% after spatio-temporal filtering using PCA and ICA, respectively. We then discuss the relationship between the CME sources obtained by ICA and the environmental loads. The results reveal that the independent displacements extracted by ICA correlate with the atmospheric mass loading (ATML) and land water storage mass loading (LWS) of Taiwan in terms of both its amplitude and phase. We then use the white noise plus power law noise model to quantitatively estimate the noise characteristics of the pre- and post-filtered coordinate time series based on the maximum likelihood estimation criterion. The results indicate that spatio-temporal filtering reduces the amplitude of the PL and the periodic terms in the GPS time series

    GNSS vertical coordinate time series analysis using single-channel independent component analysis method

    No full text
    Daily vertical coordinate time series of Global Navigation Satellite System (GNSS) stations usually contains tectonic and non-tectonic deformation signals, residual atmospheric delay signals, measurement noise, etc. In geophysical studies, it is very important to separate various geophysical signals from the GNSS time series to truthfully reflect the effect of mass loadings on crustal deformation. Based on the independence of mass loadings, we combine the Ensemble Empirical Mode Decomposition (EEMD) with the Phase Space Reconstruction-based Independent Component Analysis (PSR-ICA) method to analyze the vertical time series of GNSS reference stations. In the simulation experiment, the seasonal non-tectonic signal is simulated by the sum of the correction of atmospheric mass loading and soil moisture mass loading. The simulated seasonal non-tectonic signal can be separated into two independent signals using the PSR-ICA method, which strongly correlated with atmospheric mass loading and soil moisture mass loading, respectively. Likewise, in the analysis of the vertical time series of GNSS reference stations of Crustal Movement Observation Network of China (CMONOC), similar results have been obtained using the combined EEMD and PSR-ICA method. All these results indicate that the EEMD and PSR-ICA method can effectively separate the independent atmospheric and soil moisture mass loading signals and illustrate the significant cause of the seasonal variation of GNSS vertical time series in the mainland of China

    An Enhanced Multi-GNSS Navigation Algorithm by Utilising a Priori

    No full text
    corecore