31 research outputs found
Identification of PDCD1 as a potential biomarker in acute rejection after kidney transplantation via comprehensive bioinformatic analysis
BackgroundAcute rejection is a determinant of prognosis following kidney transplantation. It is essential to search for novel noninvasive biomarkers for early diagnosis and prompt treatment.MethodsGene microarray data was downloaded from the Gene Expression Omnibus (GEO) expression profile database and the intersected differentially expressed genes (DEGs) was calculated. We conducted the DEGs with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Distribution of immune cell infiltration was calculated by CIBERSORT. A hub gene marker was identified by intersecting the rejection-related genes from WGCNA and a selected KEGG pathway—T cell receptor signaling pathway (hsa04660), and building a protein-protein interaction network using the STRING database and Cytoscape software. We performed flow-cytometry analysis to validate the hub gene.ResultsA total of 1450 integrated DEGs were obtained from five datasets (GSE1563, GSE174020, GSE98320, GSE36059, GSE25902). The GO, KEGG and immune infiltration analysis results showed that AR was mainly associated with T cell activation and various T-cell related pathways. Other immune cells, such as B cells, Macrophage and Dendritic cells were also associated with the progress. After utilizing the WGCNA and PPI network, PDCD1 was identified as the hub gene. The flow-cytometry analysis demonstrated that both in CD4+ and CD8+ T cells, PD1+CD57-, an exhausted T cell phenotype, were downregulated in the acute rejection whole blood samples.ConclusionsOur study illustrated that PDCD1 may be a candidate diagnostic biomarker for acute kidney transplant rejection via integrative bioinformatic analysis
The multifaceted role of placental growth factor in the pathogenesis and progression of bronchial asthma and pulmonary fibrosis: Therapeutic implications
Placental growth factor (PlGF) is a glycosylated dimeric protein that is homologous to vascular endothelial growth factor (VEGF). PlGF expression is upregulated in patients with bronchial asthma, suggesting that it plays a role in the pathogenesis of asthma. Bronchial asthma is characterized by chronic airway inflammation and airway hyperresponsiveness (AHR). After recurrent asthma attacks, pulmonary fibrosis develops and leads to airway remodeling and a further decline in lung function. In this review, we focused on the pivotal role of PlGF in chronic airway inflammation, AHR, and airway remodeling during bronchial asthma. Furthermore, we summarized data showing that PlGF may be a potential therapeutic target in bronchial asthma
Biochemical characterization and mutational analysis of a novel flap endonuclease 1 from Thermococcus barophilus Ch5
International audienceFlap endonuclease 1 (FEN1) plays important roles in DNA replication, repair, and recombination. Herein, we report the biochemical characteristics and catalytic mechanism of a novel FEN1 from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tb-FEN1). As expected, the recombinant Tb-FEN1 can cleave 5′-flap DNA. However, the enzyme has no activity on cleaving pseudo Y DNA, which sharply contrasts with other archaeal and eukaryotic FEN1 homologs. Tb-FEN1 retains 24% relative activity after heating at 100 o C for 20 min, demonstrating that it is the most thermostable among all reported FEN1 proteins. The enzyme displays maximal activity in a wide range of pH from 7.0 to 9.5. The Tb-FEN1 activity is dependent on a divalent metal ion, among which Mg 2+ and Mn 2+ are optimal. Enzyme activity is inhibited by NaCl. Kinetic analyses estimated that the activation energy for the removal of 5′-flap from DNA by Tb-FEN1 was 35.7 ± 4.3 kcal/mol, which is the first report on the energy barrier for excising 5′-flap from DNA by a FEN1 enzyme. Mutational studies demonstrate that the K87A, R94A and E154A amino-acid substitutions abolish cleavage activity and reduce 5′-flap DNA binding efficiencies, suggesting that residues K87, R94, and E154 in Tb-FEN1 are essential for catalysis and DNA binding as well. Overall, Tb-FEN1 is an extremely thermostable endonuclease with unusual features
CRISPR/Cas9-Mediated Integration of Large Transgene into Pig CEP112 Locus
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is a precise genome manipulating tool that can produce targeted gene mutations in various cells and organisms. Although CRISPR/Cas9 can efficiently generate gene knockout, the gene knock-in (KI) efficiency mediated by homology-directed repair remains low, especially for large fragment integration. In this study, we established an efficient method for the CRISPR/Cas9-mediated integration of large transgene cassette, which carries salivary gland-expressed multiple digestion enzymes (≈ 20 kbp) in CEP112 locus in pig fetal fibroblasts (PFFs). Our results showed that using an optimal homology donor with a short and a long arm yielded the best CRISPR/Cas9-mediated KI efficiency in CEP112 locus, and the targeting efficiency in CEP112 locus was higher than in ROSA26 locus. The CEP112 KI cell lines were used as nuclear donors for somatic cell nuclear transfer to create genetically modified pigs. We found that KI pig (705) successfully expressed three microbial enzymes (β-glucanase, xylanase, and phytase) in salivary gland. This finding suggested that the CEP112 locus supports exogenous gene expression by a tissue-specific promoter. In summary, we successfully targeted CEP112 locus in pigs by using our optimal homology arm system and established a modified pig model for foreign digestion enzyme expression in the saliva
Cell Wall Matrix Polysaccharides Contribute to Salt–Alkali Tolerance in Rice
Salt–alkali stress threatens the resilience to variable environments and thus the grain yield of rice. However, how rice responds to salt–alkali stress at the molecular level is poorly understood. Here, we report isolation of a novel salt–alkali-tolerant rice (SATR) by screening more than 700 germplasm accessions. Using 93-11, a widely grown cultivar, as a control, we characterized SATR in response to strong salt–alkali stress (SSAS). SATR exhibited SSAS tolerance higher than 93-11, as indicated by a higher survival rate, associated with higher peroxidase activity and total soluble sugar content but lower malonaldehyde accumulation. A transcriptome study showed that cell wall biogenesis-related pathways were most significantly enriched in SATR relative to 93-11 upon SSAS. Furthermore, higher induction of gene expression in the cell wall matrix polysaccharide biosynthesis pathway, coupled with higher accumulations of hemicellulose and pectin as well as measurable physio-biochemical adaptive responses, may explain the strong SSAS tolerance in SATR. We mapped SSAS tolerance to five genomic regions in which 35 genes were candidates potentially governing SSAS tolerance. The 1,4-β-D-xylan synthase gene OsCSLD4 in hemicellulose biosynthesis pathway was investigated in details. The OsCSLD4 function-disrupted mutant displayed reduced SSAS tolerance, biomass and grain yield, whereas the OsCSLD4 overexpression lines exhibited increased SSAS tolerance. Collectively, this study not only reveals the potential role of cell wall matrix polysaccharides in mediating SSAS tolerance, but also highlights applicable value of OsCSLD4 and the large-scale screening system in developing SSAS-tolerant rice
Regulates Jasmonate-Mediated Defense Responses and Growth
Jasmonates (JAs) regulate plant growth and defense responses. On perception of bioactive JAs, the JA receptor CORONATINE INSENSITIVE1 (COI1) recruits JA ZIM-domain (JAZ) proteins for degradation, and JAZ-targeted transcription factors are released to regulate JA responses. The subgroup IIId bHLH transcriptional factors, including bHLH17, bHLH13, bHLH3, and bHLH14, interact with JAZs and repress JA responses. In this study, we show that IIId bHLH factors form dimers via the C-terminus in yeast. N-terminus of bHLH13 is essential for its transcriptional repression function. bHLH13 overexpression inhibits Arabidopsis resistance to the necrotrophic fungi Botrytis cinerea and defense against the insect Spodoptera exigua . COI1 mutation disrupts the oversensitivity of the quadruple mutant bhlh3 bhlh13 bhlh14 bhlh17 in various JA responses, including anthocyanin accumulation, root growth inhibition, and defense against B cinerea and S exigua . Disruption of the TTG1/bHLH/MYB complex blocks anthocyanin accumulation of bhlh3 bhlh13 bhlh14 bhlh17 , whereas abolishment of MYC2 attenuates JA-inhibitory root growth of bhlh3 bhlh13 bhlh14 bhlh17 . These results genetically demonstrate that IIId bHLH factors function downstream of COI1 to inhibit distinctive JA responses via antagonizing different transcriptional activators
<i>OsMADS1</i> Regulates Grain Quality, Gene Expressions, and Regulatory Networks of Starch and Storage Protein Metabolisms in Rice
OsMADS1 plays a vital role in regulating floret development and grain shape, but whether it regulates rice grain quality still remains largely unknown. Therefore, we used comprehensive molecular genetics, plant biotechnology, and functional omics approaches, including phenotyping, mapping-by-sequencing, target gene seed-specific RNAi, transgenic experiments, and transcriptomic profiling to answer this biological and molecular question. Here, we report the characterization of the ‘Oat-like rice’ mutant, with poor grain quality, including chalky endosperms, abnormal morphology and loose arrangement of starch granules, and lower starch content but higher protein content in grains. The poor grain quality of Oat-like rice was found to be caused by the mutated OsMADS1Olr allele through mapping-by-sequencing analysis and transgenic experiments. OsMADS1 protein is highly expressed in florets and developing seeds. Both OsMADS1-eGFP and OsMADS1Olr-eGFP fusion proteins are localized in the nucleus. Moreover, seed-specific RNAi of OsMADS1 also caused decreased grain quality in transgenic lines, such as the Oat-like rice. Further transcriptomic profiling between Oat-like rice and Nipponbare grains revealed that OsMADS1 regulates gene expressions and regulatory networks of starch and storage protein metabolisms in rice grains, hereafter regulating rice quality. In conclusion, our results not only reveal the crucial role and preliminary mechanism of OsMADS1 in regulating rice grain quality but also highlight the application potentials of OsMADS1 and the target gene seed-specific RNAi system in improving rice grain quality by molecular breeding