86,908 research outputs found
Spatial dispersion and energy in strong chiral medium
Since the discovery of backward-wave materials, people have tried to realize
strong chiral medium, which is traditionally thought impossible mainly for the
reason of energy and spatial dispersion. We compare the two most popular
descriptions of chiral medium. After analyzing several possible reasons for the
traditional restriction, we show that strong chirality parameter leads to
positive energy without any frequency-band limitation in the weak spatial
dispersion. Moreover, strong chirality does not result in a strong spatial
dispersion, which occurs only around the traditional limit point. For strong
spatial dispersion where higher-order terms of spatial dispersion need to be
considered, the energy conversation is also valid. Finally, we show that strong
chirality need to be realized from the conjugated type of spatial dispersion.Comment: 6 pages, 2 figure
Text Coherence Analysis Based on Deep Neural Network
In this paper, we propose a novel deep coherence model (DCM) using a
convolutional neural network architecture to capture the text coherence. The
text coherence problem is investigated with a new perspective of learning
sentence distributional representation and text coherence modeling
simultaneously. In particular, the model captures the interactions between
sentences by computing the similarities of their distributional
representations. Further, it can be easily trained in an end-to-end fashion.
The proposed model is evaluated on a standard Sentence Ordering task. The
experimental results demonstrate its effectiveness and promise in coherence
assessment showing a significant improvement over the state-of-the-art by a
wide margin.Comment: 4 pages, 2 figures, CIKM 201
Securing UAV Communications Via Trajectory Optimization
Unmanned aerial vehicle (UAV) communications has drawn significant interest
recently due to many advantages such as low cost, high mobility, and on-demand
deployment. This paper addresses the issue of physical-layer security in a UAV
communication system, where a UAV sends confidential information to a
legitimate receiver in the presence of a potential eavesdropper which are both
on the ground. We aim to maximize the secrecy rate of the system by jointly
optimizing the UAV's trajectory and transmit power over a finite horizon. In
contrast to the existing literature on wireless security with static nodes, we
exploit the mobility of the UAV in this paper to enhance the secrecy rate via a
new trajectory design. Although the formulated problem is non-convex and
challenging to solve, we propose an iterative algorithm to solve the problem
efficiently, based on the block coordinate descent and successive convex
optimization methods. Specifically, the UAV's transmit power and trajectory are
each optimized with the other fixed in an alternating manner until convergence.
Numerical results show that the proposed algorithm significantly improves the
secrecy rate of the UAV communication system, as compared to benchmark schemes
without transmit power control or trajectory optimization.Comment: Accepted by IEEE GLOBECOM 201
- …