32,518 research outputs found
Opaque Service Virtualisation: A Practical Tool for Emulating Endpoint Systems
Large enterprise software systems make many complex interactions with other
services in their environment. Developing and testing for production-like
conditions is therefore a very challenging task. Current approaches include
emulation of dependent services using either explicit modelling or
record-and-replay approaches. Models require deep knowledge of the target
services while record-and-replay is limited in accuracy. Both face
developmental and scaling issues. We present a new technique that improves the
accuracy of record-and-replay approaches, without requiring prior knowledge of
the service protocols. The approach uses Multiple Sequence Alignment to derive
message prototypes from recorded system interactions and a scheme to match
incoming request messages against prototypes to generate response messages. We
use a modified Needleman-Wunsch algorithm for distance calculation during
message matching. Our approach has shown greater than 99% accuracy for four
evaluated enterprise system messaging protocols. The approach has been
successfully integrated into the CA Service Virtualization commercial product
to complement its existing techniques.Comment: In Proceedings of the 38th International Conference on Software
Engineering Companion (pp. 202-211). arXiv admin note: text overlap with
arXiv:1510.0142
Berry's phase with quantized field driving: effects of inter-subsystem coupling
The effect of inter-subsystem couplings on the Berry phase of a composite
system as well as that of its subsystem is investigated in this paper. We
analyze two coupled spin- particles with one driven by a quantized
field as an example, the pure state geometric phase of the composite system as
well as the mixed state geometric phase for the subsystem is calculated and
discussed.Comment: 4 pages, 1 figur
Rotation in galaxy clusters from MUSIC simulations with the kinetic Sunyaev-Zel'dovich effect
We propose in this work its application for the detection of possible coherent rotational motions in the hot intra-cluster medium. We select a sample of massive, relaxed and rotating galaxy clusters from Marenostrum-mUltidark SImulations of galaxy Clusters (MUSIC), and we produce mock maps of the temperature distortion produced by the kinetic Sunyaev-Zel'dovich effect by exploring six different lines of sight, in the best observational condition. These maps are compared with the expected signal computed from a suitable theoretical model in two cases: (i) focusing only on the contribution from the rotation, and (ii) accounting also for the cluster bulk motion. We find that the parameters of the model assumed for the radial profile of the rotational velocity, averaged over the considered lines of sight, are in agreement within two standard deviations at most with independent estimates from the simulation data, without being significantly affected by the presence of the cluster bulk term. The amplitude of the rotational signal is, on average, of the order of 23 per cent of the total signal accounting also for the cluster bulk motion, and its values are consistent with the literature. The projected bulk velocity of the cluster is also recovered at the different lines of sight, with values in agreement with the simulation dataASB acknowledges funding from Sapienza Università di Roma - Progetti per Avvio alla Ricerca Anno 2017, prot. AR11715C82402BC
Entropy and specific heat for open systems in steady states
The fundamental assumption of statistical mechanics is that the system is
equally likely in any of the accessible microstates. Based on this assumption,
the Boltzmann distribution is derived and the full theory of statistical
thermodynamics can be built. In this paper, we show that the Boltzmann
distribution in general can not describe the steady state of open system. Based
on the effective Hamiltonian approach, we calculate the specific heat, the free
energy and the entropy for an open system in steady states. Examples are
illustrated and discussed.Comment: 4 pages, 7 figure
NOVEL ENERGY ABSORBING MATERIALS WITH APPLICATIONS IN HELMETED HEAD PROTECTION
A finite element, functionally graded foam model (FGFM) is proposed, which is shown to provide more effective energy absorption management, compared to homogenous foams, under low energy impact conditions. The FGFM is modelled by discretising a virtual foam into a large number of element layers through the foam thickness. Each layer is described by a unique constitutive cellular response, which is derived from the initial foam density, ρ, unique to that layer. Large strain unixial compressive tests at a strain rate of 0.001 s-1 are performed on expanded polystyrene (EPS), and their σ −ε response is used as input to a modified constitutive model from the literature. It is found that under low energy impacts an FGFM can outperform a uniform foam of equivalent density terms of reducing peak accelerations, while performing almost as effectively as uniform foams under high energy conditions. These novel materials, properly manufactured, could find use as next generation helmet liners in answer to recent, more rigorous equestrian helmet standards, e.g. BS EN 14572:2005
Atom-molecule conversion with particle losses
Based on the mean-field approximation and the phase space analysis, we study
the dynamics of an atom-molecule conversion system subject to particle loss.
Starting from the many-body dynamics described by a master equation, an
effective nonlinear Schr\"odinger equation is introduced. The classical phase
space is then specified and classified by fixed points. The boundary, which
separate different dynamical regimes have been calculated and discussed. The
effect of particle loss on the conversion efficiency and the self-trapping is
explored.Comment: 6 pages, 5 figure
- …