35,979 research outputs found
Dynamical stability of entanglement between spin ensembles
We study the dynamical stability of the entanglement between the two spin
ensembles in the presence of an environment. For a comparative study, we
consider the two cases: a single spin ensemble, and two ensembles linearly
coupled to a bath, respectively. In both circumstances, we assume the validity
of the Markovian approximation for the bath. We examine the robustness of the
state by means of the growth of the linear entropy which gives a measure of the
purity of the system. We find out macroscopic entangled states of two spin
ensembles can stably exist in a common bath. This result may be very useful to
generate and detect macroscopic entanglement in a common noisy environment and
even a stable macroscopic memory.Comment: 4 pages, 1 figur
A Wedge-DCB Test Methodology to Characterise High Rate Mode-I Interlaminar Fracture Properties of Fibre Composites
A combined numerical-experimental methodology is presented to measure dynamic Mode-I fracture properties of fiber reinforced composites. A modified wedge-DCB test using a Split-Hopkinson Bar technique along with cohesive zone modelling is utilised for this purpose. Three different comparison metrics, namely, strain-displacement response, crack propagation history and crack opening history are employed in order to extract unique values for the cohesive fracture properties of the delaminating interface. More importantly, the complexity of dealing with the frictional effects between the wedge and the DCB specimen is effectively circumvented by utilising right acquisition techniques combined with an inverse numerical modelling procedure. The proposed methodology is applied to extract the high rate interlaminar fracture properties of carbon fiber reinforced epoxy composites and it is further shown that a high level of confidence in the calibrated data can be established by adopting the proposed methodology
S-wave bottom tetraquarks
The relativistic four-quark equations are found in the framework of
coupled-channel formalism. The dynamical mixing of the meson-meson states with
the four-quark states is considered. The four-quark amplitudes of the
tetraquarks, including , , and bottom quarks, are constructed. The
poles of these amplitudes determine the masses and widths of -wave bottom
tetraquarks.Comment: 8 pages, late
Rotation in galaxy clusters from MUSIC simulations with the kinetic Sunyaev-Zel'dovich effect
We propose in this work its application for the detection of possible coherent rotational motions in the hot intra-cluster medium. We select a sample of massive, relaxed and rotating galaxy clusters from Marenostrum-mUltidark SImulations of galaxy Clusters (MUSIC), and we produce mock maps of the temperature distortion produced by the kinetic Sunyaev-Zel'dovich effect by exploring six different lines of sight, in the best observational condition. These maps are compared with the expected signal computed from a suitable theoretical model in two cases: (i) focusing only on the contribution from the rotation, and (ii) accounting also for the cluster bulk motion. We find that the parameters of the model assumed for the radial profile of the rotational velocity, averaged over the considered lines of sight, are in agreement within two standard deviations at most with independent estimates from the simulation data, without being significantly affected by the presence of the cluster bulk term. The amplitude of the rotational signal is, on average, of the order of 23 per cent of the total signal accounting also for the cluster bulk motion, and its values are consistent with the literature. The projected bulk velocity of the cluster is also recovered at the different lines of sight, with values in agreement with the simulation dataASB acknowledges funding from Sapienza UniversitĂ di Roma - Progetti per Avvio alla Ricerca Anno 2017, prot. AR11715C82402BC
On invariant sets in Lagrangian graphs
In this exposition, we show that a Hamiltonian is always constant on a
compact invariant connected subset which lies in a Lagrangian graph provided
that the Hamiltonian and the graph are smooth enough. We also provide some
counterexamples for the case that the Hamiltonians are not smooth enough.Comment: 4 page
A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling
HiResFlood-UCI was developed by coupling the NWS's hydrologic model (HL-RDHM) with the hydraulic model (BreZo) for flash flood modeling at decameter resolutions. The coupled model uses HL-RDHM as a rainfall-runoff generator and replaces the routing scheme of HL-RDHM with the 2D hydraulic model (BreZo) in order to predict localized flood depths and velocities. A semi-automated technique of unstructured mesh generation was developed to cluster an adequate density of computational cells along river channels such that numerical errors are negligible compared with other sources of error, while ensuring that computational costs of the hydraulic model are kept to a bare minimum. HiResFlood-UCI was implemented for a watershed (ELDO2) in the DMIP2 experiment domain in Oklahoma. Using synthetic precipitation input, the model was tested for various components including HL-RDHM parameters (a priori versus calibrated), channel and floodplain Manning n values, DEM resolution (10 m versus 30 m) and computation mesh resolution (10 m+ versus 30 m+). Simulations with calibrated versus a priori parameters of HL-RDHM show that HiResFlood-UCI produces reasonable results with the a priori parameters from NWS. Sensitivities to hydraulic model resistance parameters, mesh resolution and DEM resolution are also identified, pointing to the importance of model calibration and validation for accurate prediction of localized flood intensities. HiResFlood-UCI performance was examined using 6 measured precipitation events as model input for model calibration and validation of the streamflow at the outlet. The Nash–Sutcliffe Efficiency (NSE) obtained ranges from 0.588 to 0.905. The model was also validated for the flooded map using USGS observed water level at an interior point. The predicted flood stage error is 0.82 m or less, based on a comparison to measured stage. Validation of stage and discharge predictions builds confidence in model predictions of flood extent and localized velocities, which are fundamental to reliable flash flood warning
Quantum information approach to the quantum phase transition in the Kitaev honeycomb model
Kitaev honeycomb model with topological phase transition at zero temperature
is studied using quantum information method. Based on the exact solution of the
ground state, the mutual information between two nearest sites and between two
bonds with longest distance are obtained. It is found that the mutual
information show some singularities at the critical point where the ground
state of the system transits from gapless phase to gapped phase. The
finite-size effects and scalar behavior are also studied. The mutual
information can serve as good indicators of the topological phase transition,
since the mutual information catches some global correlation properties of the
system. Meanwhile, this method has other advantages such that the phase
transition can be determined easily and the order parameters are not required
previously, for the order parameters of some topological phase transitions are
hard to know.Comment: 8 pages, 7 figures, published versio
- …