7 research outputs found

    The Application of Bilayer Heterogeneous MOFs in pH and Heat-Triggered Systems for Controllable Fragrance Release

    Get PDF
    To facilitate the integration of a fragrance encapsulation system into different products to achieve effective releases, a dual-responsive release system with pH and thermal trigger control is designed in this work. A series of ZIF-8 (M) and bilayer ZIF-8-on-ZIF-8 (MM) materials are synthesized by a solvent method at room temperature. The fragrance is encapsulated into the ZIFs by dynamic adsorption or in situ encapsulation combined dynamic adsorption. The fragrance loading contributed by dynamic adsorption was as high as 80%. The fragrance loaded in the double-layer MM host was almost twice that of the monolayer host M due to the stronger electrostatic interaction between MM and vanillin. In the pH and thermal trigger response release experiments, the second MOF layer in the MM host, as a controlled entity, greatly improved the load and kinetic equilibrium time of vanillin, and realized the controlled release of guest molecules. The developed dual-responsive release system in this work exhibits great potential in daily chemical products.</p

    Controlled Thermal Release of L-Menthol with Cellulose-Acetate-Fiber-Shelled Metal-Organic Framework

    No full text
    Fragrances have been widely used in many customer products to improve the sensory quality and cover flavor defects. The key to the successful application of fragrance is to realize controlled fragrance release, which relies on the use of an appropriate carrier for fragrance. An ideal fragrance carrier helps to achieve the stable storage and controlled release of fragrance. In this work, a novel composite fragrance carrier with MIL-101 (Cr) as the fragrance host and cellulose acetate fiber (CAF) as the protective shell was developed. The encapsulation effect of MIL-101 (Cr) and the protective function of the CAF shell significantly improved the storage stability of L-menthol (LM). Only 5 wt % of LM was lost after 40 days of storage at room temperature. Encapsulated LM could also be effectively released upon heating due to the thermal responsiveness of CAF. In addition, the composite carrier was highly stable with neglectable Cr leaching under different conditions. The results of this work showed that the developed composite carrier could be a promising carrier for the thermally triggered release of fragrance

    A Novel Tri-Layer Cellulose-Based Membrane for the Capture and Analysis of Mainstream Smoke of Tobacco

    No full text
    Efficient capture of particulate matter in the smoke mainstream using low-cost filter pads is important for cost-effective analysis of mainstream smoke. The Cambridge filter pad (CFP) is the standard material for the collection of particulate matter in the mainstream. In this work, we report a low-cost alternative to CFP, which is composed of a cellulose acetate fiber (CAF) interlayer and two cotton fiber (CF) layers on both sides. The CF/CAF/CF filter exhibited high affinity toward typical tobacco additives such as glycerol and glycerol triacetate. In addition, the CF/CAF/CF filter had a favorable porous structure for the trapping of particulate matter. Due to these beneficial features, the CF/CAF/CF filter exhibited improved particulate matter trapping performance. These results suggest that the as-developed CF/CAF/CF filter could be a low-cost alternative to CFP

    Heat Triggered Release Behavior of Eugenol from Tobacco Leaf

    No full text
    Fragrance is a commonly used substance in a number of commercial products, and fine control over the release behavior of the fragrance is essential for its successful application. Understanding the release behavior of the fragrance is the key to realizing the control of its release. Herein, we use tobacco leaf as the model substrate and investigate the mechanism of eugenol release from tobacco leaf. Our results show that interaction between eugenol and tobacco leaf is weak physical adsorption, and the eugenol release from tobacco leaf substrate is a temperature-dependent process. Further analysis on the release behavior reveals that eugenol release is closely associated with the morphology change of tobacco leaves under heating conditions. Our results provide insight into the release mechanism of fragrance from polymer substrate and may be useful for the future design of fragrance release systems

    Understanding the Advantageous Features of Bacterial Celluloseā€Based Separator in Liā€“S Battery

    No full text
    Abstract Separator is a critical component of lithiumā€“sulfur (Liā€“S) battery, and the property of separator influences the battery performance significantly. Celluloseā€based separator is emerging as a promising alternative to the traditional polyolefin separator used in Liā€“S battery. Although the excellent battery performance of various celluloseā€based separators is shown, a comprehensive understanding of the advantageous features of bacterial cellulose (BC)ā€based separator in Liā€“S battery still is lacking. In this work, models of BC separators with different thicknesses are prepared and compared with polypropylene separators in terms of their electrochemical performance. The results show that the BC separator exhibits favorable electrolyte affinity, improved lithiumā€ion transport, suppressed shuttling of soluble polysulfides, and inhibited the formation of lithium dendrites. The combination of these unique characters of BC separator endows it with excellent battery performance. These results provide insight into the use and design of functional celluloseā€based separators in advanced secondary batteries
    corecore