17,982 research outputs found

    Full-scale metamaterial window for building application

    Get PDF
    The research on acoustic metamaterials (AMMs) has progressed rapidly over the last decades. One of the applications is for noise control and airflow in duct-like systems. These are useful features for natural ventilation window design; however, the visual impact between indoor and outdoor environment, as another key factor of windows, makes the existing AMMs not directly useable for this application due to their geometrical complexity and size limitations. In this research, an AMM previously developed by the authors is exploited for full-scale window design. The AMM is packed only in the window frame so that the window transparency is not compromised. A broadband attenuation performance is obtained by the resonant unit cells constituting the AMM. The effect of the geometric variation on the window performance in terms of both acoustics and the airflow is analysed numerically through Finite Element Method (FEM) models. The performances of different AMM windows are evaluated and compared with those of conventional window designs. The simulation results show that this new AMM-based window design can overcome the limitations of the conventional windows, with great potential in real applications

    Vector magnetic field sensing by single nitrogen vacancy center in diamond

    Full text link
    In this Letter, we proposed and experimentally demonstrated a method to detect vector magnetic field with a single nitrogen vacancy (NV) center in diamond. The magnetic field in parallel with the axis of the NV center can be obtained by detecting the electron Zeeman shift, while the Larmor precession of an ancillary nuclear spin close to the NV center can be used to measure the field perpendicular to the axis. Experimentally, both the Zeeman shift and Larmor precession can be measured through the fluorescence from the NV center. By applying additional calibrated magnetic fields, complete information of the vector magnetic field can be achieved with such a method. This vector magnetic field detection method is insensitive to temperature fluctuation and it can be applied to nanoscale magnetic measurement.Comment: 5 pages, 5 figure

    Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing

    Get PDF
    A biodegradable two-dimensional (2D) delivery platform based on loading black phosphorus nanosheets (BPs) with Cas9 ribonucleoprotein engineered with three nuclear localization signals (NLSs) at C terminus (Cas9N3) is successfully established. The Cas9N3-BPs enter cells effectively via membrane penetration and endocytosis pathways, followed by a BPs biodegradation-associated endosomal escape and cytosolic releases of the loaded Cas9N3 complexes. The Cas9N3-BPs thus provide efficient genome editing and gene silencing in vitro and in vivo at a relatively low dose as compared with other nanoparticle-based delivery platforms. This biodegradable 2D delivery platform offers a versatile cytosolic delivery approach for CRISPR/Cas9 ribonucleoprotein and other bioactive macromolecules for biomedical applications

    A metawindow with optimised acoustic and ventilation performance

    Get PDF
    Crucial factors in window performance, such as natural ventilation and noise control, are generally conceived separately, forcing users to choose one over the other. To solve this dualism, this study aimed to develop an acoustic metamaterial (AMM) ergonomic window design to allow noise control without dependence on the natural ventilation duration and vice versa. First, the finite element method (FEM) was used to investigate the noise control performance of the acoustic metawindow (AMW) unit, followed by anechoic chamber testing, which also served as the validation of the FEM models. Furthermore, FEM analysis was used to optimise the acoustic performance and assess the ventilation potential. The numerical and experimental results exhibited an overall mean sound reduction of 15 dB within a bandwidth of 380 to 5000 Hz. A good agreement between the measured and numerical results was obtained, with a mean variation of 30%. Therefore, the AMW unit optimised acoustic performance, resulting in a higher noise reduction, especially from 50 to 500 Hz. Finally, most of the AMW unit configurations are suitable for natural ventilation, and a dynamic tuned ventilation capacity can be achieved for particular ranges by adjusting the window’s ventilation opening. The proposed designs have potential applications in building acoustics and engineering where natural ventilation and noise mitigation are required to meet regulations simultaneously

    Reduction effect of individual N, P, K fertilization on antibiotic resistance genes in reclaimed water irrigated soil

    Get PDF
    The transfer of antibiotic resistance genes (ARGs) in soil under reclaimed water irrigation poses a potential environmental risk. Regulation of NPK fertilizer could influence the behavior of bacterial communities, mobile genetic elements (MGEs), and soil properties, which determine the fate of ARGs. To identify the key element in NPK fertilizer and realize efficient regulation, we explored the effect of individual N, P, K fertilization on ARGs variation in tomato rhizosphere and bulk soils. Compared with an unfertilized treatment, N fertilization resulted in greater decreases in the abundance of ARGs (decreases of 24.06%‒73.09%) than did either P fertilization (increases of up to 35.84%, decreases of up to 58.80%) or K fertilization (decreases of 13.47%‒72.47%). The influence of different forms of N (CO(NH2)2, NaNO3, and NH4HCO3), P (Ca(H2PO4)2 and CaMgO4P+), and K (KCl and K2(SO4)) fertilizers was also investigated in this study, and showed the influence of NaNO3, CaMgO4P+, and K2(SO4) on reducing ARGs abundance was greater in different types of N, P, K fertilizers. Bacterial communities showed the strongest response to N fertilization. The reduced bacterial diversity and abundance of ARG-host and non-host organisms explained the decline of total ARG abundance in soil. In soils fertilized with either P or K, the effect of soil properties, especially total nitrogen and pH, on ARGs variation was greater than that of bacterial community and MGEs. These results suggest that N regulation of in NPK fertilizer may be an effective way to reduce the risks of ARGs in soil associated with reclaimed water irrigation
    • …
    corecore