77 research outputs found

    From Home Energy Audit to Retrofit and Beyond

    Full text link
    Many in Michigan, like countless others across the United States, live in energy inefficient, detached single-family homes. There is an enormous opportunity to decrease state residential energy consumption and its subsequent greenhouse gas emissions, improve occupant comfort, and bolster home values by auditing and retrofitting these homes with more efficient energy systems. In accordance with Michigan state law PA 295, DTE Energy maintains an energy optimization (EO) program aimed at conserving electricity and gas. Under this program, the utility company offers residential customers several options and incentives to invest in energy saving measures. However, participation by homeowners has been limited. Through collaboration between the University of Michigan and DTE Energy, this project sought to evaluate the effectiveness of the utility’s audit-to-retrofit programs and overall residential EO program. Software tools—including MySQL (a relational database management system), R (a statistical analysis package), ArcGIS (a geographic information system), and SurveyGizmo (an online survey development platform) — facilitated quantitative and qualitative program evaluation. These findings informed actionable recommendations to increase program participation, improve customer satisfaction, and target future EO participants. This comprehensive assessment examined both temporal and spatial scales and should help create better mechanisms for data storage, manipulation, and visualization. Largescale data analysis in the context of residential energy efficiency is becoming increasingly necessary and important for utilities. An integrated approach such as the one laid out in this report could improve the way utilities like DTE Energy implement home energy efficiency programs, assess these programs, and help increase participation for future programs.Master of ScienceNatural Resources and EnvironmentUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/97777/4/From_Home_Energy_Audit_to_Retrofit_and_Beyond.May_2013.V22.pd

    Secondary development based on 3D Slicer extension modules

    Get PDF
    Slicer module is an important part of software, which provides algorithmic support for data processing for the realization of various functions of software. As an external plug-in that needs to be installed, extensions have strong independence. Developers can redevelop the original extension module and modify its functions and interfaces in order to achieve better results to meet the requirements of medical use. In this paper, the feasibility scheme and specific operation steps for the secondary development of the extended module are proposed, so as to improve efficiency, simplify the operation process, and facilitate the use of Slicer software in clinical medicine and medical research

    Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips

    Get PDF
    Accumulating evidence demonstrates that the aberrant expression of cell cycle regulation and DNA repair genes can result in abnormal cell proliferation and genomic instability in eukaryotic cells under different stresses. Herein, Arabidopsis thaliana (Arabidopsis) seedlings were grown hydroponically on 0.5 × MS media containing cadmium (Cd) at 0–2.5 mg L−1 for 5 d of treatment. Real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that expression of DNA damage repair and cell cycle regulation genes, including BRCA1, MRE11, WEE1, CDKA;1 and PCNA1, showed an inverted U-shaped dose-response. In contrast, notably reduced expression was observed for G1-to-S transition-related genes, Histone H4, E2Fa and PCNA2; DSB end processing, GR1; G2-to-M transition-related gene, CYCB1;1; and DNA mismatch repair, MSH2, MSH6 and MLH1 genes in root tips exposed to 0.125–2.5 mg/L Cd for 5 d. Flow cytometry (FCM) analysis revealed significant increases of cells with a 2C nuclear content and with a 4C and 8C nuclear content under Cd stresses of 0.125 and 1–2.5 mg L−1, respectively. Our results suggest that 0.125 mg L−1 Cd-induced DNA damage induced the marked G1/S arrest, leading to accelerated growth in root tips, while 1.0–2.5 mg L−1 Cd-induced DNA damage caused a notable G2/M arrest in root tips, leading to reduced growth in root tips. This may be a protective mechanism that prevents cells with damaged DNA from dividing under Cd stress

    OR-008 ERK-BAX signaling is involved in GLP-1-mediated antidepressant effects of metformin and exercise in CUMS mice

    Get PDF
    Objective Both depression itself and antidepressant medication have been reported to be significantly related to the risk of type 2 diabetes mellitus (T2DM). Glucagon-like peptide-1 (GLP-1), a treatment target for T2DM, has a neuroprotective effect. As an enhancer and sensitiser of GLP-1, metformin has been reported to be safe for the neurodevelopment. The present study aimed to determine whether and how GLP-1 mediates antidepressant effects of metformin and exercise in mice. Methods Male C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) for 8 weeks. From the 4th week, CUMS mice were subjected to oral metformin treatment and/or treadmill running. A videocomputerized tracking system was used to record behaviors of mice for a 5-min session. ELISA, western blotting and immunohistochemistry were used to examine gene expression in mouse serum or hippocampus. Results Our results supported the validity of metformin as a useful antidepressant; moreover, treadmill running favored metformin effects on exploratory behaviors and serum corticosterone levels. CUMS reduced GLP-1 protein levels and phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), but increased protein levels of B-cell lymphoma 2-associated X-protein (BAX) in mice hippocampus. All these changes were restored by both single and combined treatment with metformin and exercise. Conclusions Our findings have demonstrated that ERK-BAX signaling is involved in GLP-1-mediated antidepressant effects of metformin and exercise, which may provide a novel topic for future clinical research

    Co-delivery of Cisplatin(IV) and Capecitabine as an Effective and Non-toxic Cancer Treatment

    Get PDF
    A strategy for preparing composite micelles (CM) containing both cisplatin(IV) [CisPt(IV)] prodrug and capecitabine using a co-assembly method is described in this study. The CM are capable of an effective release of the anticancer drug cisplatin(II) [CisPt(II)] and capecitabine via acid hydrolysis once they are internalized by cancer cells. Moreover, the CM display a synergistic effect in vitro and the combination therapy in the micellar dosage form leads to reduced systemic toxicity and enhanced antitumor efficacy in vivo

    PL-010 Chronic mild stress improves glucose homeostasis via myonectin-mediated suppression of sympathetic activity in high-fat diet-fed mice

    Get PDF
    Objective Recent studies suggest that chronic stress exposure can ameliorate the progression of diet-induced prediabetic disease, by inhibiting an increase in weight gain, caloric intake and efficiency and insulin resistance. To determine the underlying mechanism by which chronic stress improves the progression of type 2 diabetes, we developed a model of chronic mild stress in high-fat diet(HFD)-fed mice which are resistant to obesity and exhibit a healthy-like metabolic phenotype. Methods High-fat diet (HFD): 45% kcal derived from fat (Research Diets, Inc.).Mice experienced one stressor during the day and a different stressor during the night. Stressors were randomly chosen from the following list : cage tilt on a 45° angle for 1 to 16 h; food deprivation for 12 to 16 h; white noise for 1 to 16 h; strobe light illumination for 1 to 16 h; crowded housing; light cycle (continuous illumination) for 24 to 36 h; dark cycle (continuous darkness) for 24 to 36 h; water deprivation for 12 to 16 h; damp bedding (200 ml water poured into sawdust bedding) for 12 to 16 h.Recombinant adeno-associated virus (AAV): AAV9 vectors encoding myonectin under the control of the ubiquitous CMV promoter (AAV9-CMV-Vip) or an equal dose of the AAV9-CMV-null vector were delivered to C57BL/6 mice by the tail vein. Mice were deprived of food for 16 h and then subjected to test 7 days after AAV injection. Results Chronic stress improved glucose intolerance and sympathetic overactivity in HFD-fed mice. Chronic stress attenuated epinephrine(EPI)-stimulated glycerol release into blood in vivo and accelerated glycerol release from white adipose tissue followed by in vitro incubation with EPI. Chronic stress reduced plasma triglyceride but increased the levels of plasma insulin and myonectin. We further found that adeno-associated virus 9 (AAV9)-mediated myonectin overexpression improved glucose homeostasis and reduced epinephrine sensitivity. Myonectin overexpression reduced plasma norepinephrine, EPI and leptin levels, and increased insulin sensitivity in brown and white adipose tissue. Intense sympathetic activity with high-intensity running inhibited myonectin expression in skeletal muscle, whereas medium and low-intensity exercise running increased myonectin expression. Conclusions These findings suggest that chronic mild stress can improve glucose homeostasis via myonectin-mediated suppression of sympathetic activity in high-fat diet-fed mice

    Cadmium-induced genomic instability in Arabidopsis: molecular toxicological biomarkers for early diagnosis of cadmium stress

    Get PDF
    Microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) are methods to evaluate the toxicity of environmental pollutants in stress-treated plants and human cancer cells. Here, we evaluate these techniques to screen for genetic and epigenetic alterations of Arabidopsis plantlets exposed to 0–5.0 mg L−1 cadmium (Cd) for 15 d. There was a substantial increase in RAPD polymorphism of 24.5, and in genomic methylation polymorphism of 30.5–34.5 at CpG and of 14.5–20 at CHG sites under Cd stress of 5.0 mg L−1 by RAPD and of 0.25–5.0 mg L−1 by MSAP-PCR, respectively. However, only a tiny increase of 1.5 loci by RAPD occurred under Cd stress of 4.0 mg L−1, and an additional high dose (8.0 mg L−1) resulted in one repeat by MSI analysis. MSAP-PCR detected the most significant epigenetic modifications in plantlets exposed to Cd stress, and the patterns of hypermethylation and polymorphisms were consistent with inverted U-shaped dose responses. The presence of genomic methylation polymorphism in Cd-treated seedlings, prior to the onset of RAPD polymorphism, MSI and obvious growth effects, suggests that these altered DNA methylation loci are the most sensitive biomarkers for early diagnosis and risk assessment of genotoxic effects of Cd pollution in ecotoxicology

    Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots

    Get PDF
    DNA mismatch repair (MMR) proteins have been implicated in sensing and correcting DNA damage, and in governing cell cycle progression in the presence of structurally anomalous nucleotide lesions induced by different stresses in mammalian cells. Here, Arabidopsis seedlings were grown hydroponically on 0.5 × MS media containing cadmium (Cd) at 0–4.0 mg L−1 for 5 d. Flow cytometry results indicated that Cd stress induced a G2/M cell cycle arrest both in MLH1-, MSH2-, MSH6-deficient, and in WT roots, associated with marked changes of G2/M regulatory genes, including ATM, ATR, SOG1, BRCA1, WEE1, CYCD4; 1, MAD2, CDKA;1, CYCB1; 2 and CYCB1; 1. However, the Cd-induced G2/M phase arrest was markedly diminished in the MSH2- and MSH6-deficient roots, while a lack of MLH1 had no effect on Cd-induced G2 phase arrest relative to that in the wild type roots under the corresponding Cd stress. Expression of the above G2/M regulatory genes was altered in MLH1, MSH2 and MSH6-deficient roots in response to Cd treatment. Furthermore, Cd elicited endoreplication in MSH2- and MSH6-deficient roots, but not in MLH1-deficient Arabidopsis roots. Results suggest that MSH2 and MSH6 may act as direct sensors of Cd-mediated DNA damage. Taken together, we conclude that MSH2 and MSH6, but not MLH1, components of the MMR system are involved in the G2 phase arrest and endoreplication induced by Cd stress in Arabidopsis roots

    Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract – possible synergistic and resistance mechanisms

    Get PDF
    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin
    • …
    corecore