37 research outputs found

    A genome-wide association study identifies FSHR rs2300441 associated with follicle-stimulating hormone levels

    Get PDF
    Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play critical roles in female reproduction, while the underlying genetic basis is poorly understood. Genome-wide association studies (GWASs) of FSH and LH levels were conducted in 2590 Chinese females including 1882 polycystic ovary syndrome (PCOS) cases and 708 controls. GWAS for FSH level identified multiple variants at FSHR showing genome-wide significance with the top variant (rs2300441) located in the intron of FSHR. The A allele of rs2300441 led to a reduced level of FSH in the PCOS group (β = −.43, P = 6.70 × 10−14) as well as in the control group (β = −.35, P = 6.52 × 10−4). In the combined sample, this association was enhanced after adjusting for the PCOS status (before: β = −.38, P = 1.77 × 10−13; after: β = −.42, P = 3.33 × 10−16), suggesting the genetic effect is independent of the PCOS status. The rs2300441 explained sevenfold higher proportion of the FSH variance than the total variance explained by the two previously reported FSHR missense variants (rs2300441 R2 = 1.40% vs rs6166 R2 = 0.17%, rs6165 R2 = 0.03%). GWAS for LH did not identify any genome-wide significant associations. In conclusion, we identified genome-wide significant association between variants in FSHR and circulating FSH first, with the top associated variant rs2300441 might be a primary contributor at the population level

    Genomic Characterization and High Prevalence of Bocaviruses in Swine

    Get PDF
    Using random PCR amplification followed by plasmid subcloning and DNA sequencing, we detected bocavirus related sequences in 9 out of 17 porcine stool samples. Using primer walking, we sequenced the nearly complete genomes of two highly divergent bocaviruses we provisionally named porcine bocavirus 1 isolate H18 (PBoV1-H18) and porcine bocavirus 2 isolate A6 (PBoV2-A6) which differed by 51.8% in their NS1 protein. Phylogenetic analysis indicated that PBoV1-H18 was very closely related to a ∼2 Kb central region of a porcine bocavirus-like virus (PBo-LikeV) from Sweden described in 2009. PBoV2-A6 was very closely related to the porcine bocavirus genomes PBoV-1 and PBoV2 from China described in 2010. Among 340 fecal samples collected from different age, asymptomatic swine in five Chinese provinces, the prevalence of PBoV1-H18 and PBoV2-A6 related viruses were 45–75% and 55–70% respectively, with 30–47% of pigs co-infected. PBoV1-A6 related strains were highly conserved, while PBoV2-H18 related strains were more diverse, grouping into two genotypes corresponding to the previously described PBoV1 and PBoV2. Together with the recently described partial bocavirus genomes labeled V6 and V7, a total of three major porcine bocavirus clades have therefore been described to date. Further studies will be required to elucidate the possible pathogenic impact of these diverse bocaviruses either alone or in combination with other porcine viruses

    BUSINESS PROCESS BASED SIMULATION: A POWERFUL TOOL FOR DEMAND ANALYSIS OF BUSINESS PROCESS REENGINEERING AND INFORMATION SYSTEM IMPLEMENTATION

    No full text
    Demand analysis is of fundamentally importance in the implementation of information system. Business process reengineering (BPR) often gets involved in the process of demand analysis and play a crucial role in the achievement of project objectives. Business process based simulation (BPS) provides a precise and visual method to analyze and compare the concerned performances before and after BPR. The paper presents an industrial experience in using the BPS tool to demonstrate the effects of BPR on restraining stocking-up and overdue payments in the distribution management of a supply chain. Before significant investment involved, the related design result of BPR is validated both by the analytical method and simulation experiments. Based on the mutual supportive results, the BPS method approves its correctness and show its nicety, flexibility and the capacity of visualization.

    miR-4516 predicts poor prognosis and functions as a novel oncogene via targeting PTPN14 in human glioblastoma.

    Full text link
    Glioblastomas (GBMs) are the most aggressive primary brain tumors, with an average survival of less than 15 months. Therefore, there is a critical need to develop novel therapeutic strategies for GBM. This study aimed to assess the prognostic value of miR-4516 and investigate its oncogenic functions and the underlying cellular and molecular mechanisms in GBM. To determine the correlation between miR-4516 expression and overall survival of patients with GBM, total RNAs were isolated from 268 FFPE tumor samples, miR expression was assayed (simultaneously) using the nCounter human miRNA v3a assay followed by univariable and multivariable survival analyses. Further, in vitro and in vivo studies were conducted to define the role of miR-4516 in GBM tumorigenesis and the underlying molecular mechanisms. Upon multivariable analysis, miR-4516 was correlated with poor prognosis in GBM patients (HR = 1.49, 95%CI: 1.12-1.99, P = 0.01). Interestingly, the significance of miR-4516 was retained including MGMT methylation status. Overexpression of miR-4516 significantly enhanced cell proliferation and invasion of GBM cells both in vitro and in vivo. While conducting downstream targeting studies, we found that the tumor-promoting function of miR-4516, in part, was mediated by direct targeting of PTPN14 (protein tyrosine phosphatase, non-receptor type 14) which, in turn, regulated the Hippo pathway in GBM. Taken together, our data suggest that miR-4516 represents an independent negative prognostic factor in GBM patients and acts as a novel oncogene in GBM, which regulates the PTPN14/Hippo pathway. Thus, this newly identified miR-4516 may serve as a new potential therapeutic target for GBM treatment
    corecore