74 research outputs found

    Universal linear optical operations on discrete phase-coherent spatial modes

    Get PDF
    Linear optical operations are fundamental and significant for both quantum mechanics and classical technologies. We demonstrate a non-cascaded approach to perform arbitrary unitary and non-unitary linear operations for N-dimensional phase-coherent spatial modes with meticulously designed phase gratings. As implemented on spatial light modulators (SLMs), the unitary transformation matrix has been realized with dimensionalities ranging from 7 to 24 and the corresponding fidelities are from 95.1% to 82.1%. For the non-unitary operators, a matrix is presented for the tomography of a 4-level quantum system with a fidelity of 94.9%. Thus, the linear operator has been successfully implemented with much higher dimensionality than that in previous reports. It should be mentioned that our method is not limited to SLMs and can be easily applied on other devices. Thus we believe that our proposal provides another option to perform linear operation with a simple, fixed, error-tolerant and scalable scheme

    Programmable coherent linear quantum operations with high-dimensional optical spatial modes

    Get PDF
    A simple and flexible scheme for high-dimensional linear quantum operations on optical transverse spatial modes is demonstrated. The quantum Fourier transformation (QFT) and quantum state tomography (QST) via symmetric informationally complete positive operator-valued measures (SIC POVMs) are implemented with dimensionality of 15. The matrix fidelity of QFT is 0.85, while the statistical fidelity of SIC POVMs and fidelity of QST are ~0.97 and up to 0.853, respectively. We believe that our device has the potential for further exploration of high-dimensional spatial entanglement provided by spontaneous parametric down conversion in nonlinear crystals

    One-shot ultraspectral imaging with reconfigurable metasurfaces

    Full text link
    One-shot spectral imaging that can obtain spectral information from thousands of different points in space at one time has always been difficult to achieve. Its realization makes it possible to get spatial real-time dynamic spectral information, which is extremely important for both fundamental scientific research and various practical applications. In this study, a one-shot ultraspectral imaging device fitting thousands of micro-spectrometers (6336 pixels) on a chip no larger than 0.5 cm2^2, is proposed and demonstrated. Exotic light modulation is achieved by using a unique reconfigurable metasurface supercell with 158400 metasurface units, which enables 6336 micro-spectrometers with dynamic image-adaptive performances to simultaneously guarantee the density of spectral pixels and the quality of spectral reconstruction. Additionally, by constructing a new algorithm based on compressive sensing, the snapshot device can reconstruct ultraspectral imaging information (Δλ\Delta\lambda/λ\lambda~0.001) covering a broad (300-nm-wide) visible spectrum with an ultra-high center-wavelength accuracy of 0.04-nm standard deviation and spectral resolution of 0.8 nm. This scheme of reconfigurable metasurfaces makes the device can be directly extended to almost any commercial camera with different spectral bands to seamlessly switch the information between image and spectral image, and will open up a new space for the application of spectral analysis combining with image recognition and intellisense

    Metasurface-Based Free-Space Multi-port Beam Splitter with Arbitrary Power Ratio

    Full text link
    A beam splitter (BS) is one of the most critical building blocks in optical systems. Despite various attempts of flat-type BSs to miniaturize the conventional cube BS reported, it remains a challenge to realize an ultrathin optical BS with multi-port output, non-uniform splitting ratio and steerable outgoing directions. Herein, we have demonstrated a free-space optical multi-port beam splitter (MPBS) based on a polarization-independent all-dielectric metasurface. By applying an optimized phase-pattern paradigm via a gradient-descent-based iterative algorithm to amorphous silicon (a-Si) metasurfaces, we have prepared a variety of MPBS samples with arbitrarily predetermined output port number (2~7), power ratio and spatial distribution of output beams. The experimental results reveal that the fabricated MPBSs could achieve high total splitting efficiency (TSE, above 74.7%) and beam-splitting fidelity (similarity, above 78.4%) within the bandwidth of 100 nm (1500~1600 nm). We envision that such MPBS could provide fabulous flexibility for optical integrated system and diverse applications
    • …
    corecore