26,915 research outputs found
Electronic Structures of Fe_x$Si Probed by Photoemission Spectroscopy
The electronic structures of the Heusler type compounds Fe_x$Si in
the concentration range between x = 0 and x = 1 have been probed by
photoemission spectroscopy (PES). The observed shift of Si 2p core- level and
the main valence band structres indicate a chemical potential shift to higher
energy with increasing x. It is also clarified that the density of state at
Fermi edge is owing to the collaboration of V 3d and Fe 3d derived states.
Besides the decrease of the spectral intensity near Fermi edge with increasing
x suggests the formation of pseudo gap at large x.Comment: 4 pages, 5 figures, 5 reference
Orbital selectivity of the kink in the dispersion of Sr2RuO4
We present detailed energy dispersions near the Fermi level on the monolayer
perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved
photoemission spectroscopy. An orbital selectivity of the kink in the
dispersion of Sr2RuO4 has been found: A kink for the Ru 4d_xy orbital is
clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides
insight into the origin of the kink.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.
Decoupling trust and wireless channel induced effects on collaborative sensing attacks
One of the most crucial functionalities of cognitive radio networks is spectrum sensing. Completing this task in an accurate manner requires opportunistic spectrum access. Traditionally, sensing has been performed through energy detection by each individual secondary user. In order to increase accuracy, individual measurements are aggregated using different fusion functions. However, even though collaborative spectrum sensing can increase accuracy under benign settings, it is prone to falsification attacks, where malicious secondary users report fake sensings. Previous studies have designed trust (reputation) based systems to contain the effect of the adversaries, ignoring to a large extent the wireless channel irregularities when performing the computation. In this paper, we decouple the reasons behind an incorrect sensing report and propose the Decoupling Trust and Capability Spectrum Sensing System (DTCS3). DTCS3 is a collaborative spectrum sensing system that takes into account both a secondary sensor node's trust and its capability to sense the channel. Through thorough evaluations that consider a large variety of attack strategies, we show that by accounting for wireless induced effects while calculating the reporting trust of a secondary user, we can significantly improve the performance of a collaborative spectrum sensing system as compared to existing schemes in the literature. In particular, the true positive/negative rates can be improved by as much as 38%, while DTCS 3 is able to track and respond to dynamic changes in the adversaries' behavior. © 2014 IEEE
Transport and structural study of pressure-induced magnetic states in Nd0.55Sr0.45MnO3 and Nd0.5Sr0.5MnO3
Pressure effects on the electron transport and structure of Nd1-xSrxMnO3 (x =
0.45, 0.5) were investigated in the range from ambient to ~6 GPa. In
Nd0.55Sr0.45MnO3, the low-temperature ferromagnetic metallic state is
suppressed and a low temperature insulating state is induced by pressure. In
Nd0.5Sr0.5MnO3, the CE-type antiferromagnetic charge-ordering state is
suppressed by pressure. Under pressure, both samples have a similar electron
transport behavior although their ambient ground states are much different. It
is surmised that pressure induces an A-type antiferromagnetic state at low
temperature in both compounds
Environment-adaptive interaction primitives for human-robot motor skill learning
© 2016 IEEE. In complex environments where robots are expected to co-operate with human partners, it is vital for the robot to consider properties of their collaborative activity in addition to the behavior of its partner. In this paper, we propose to learn such complex interactive skills by observing the demonstrations of a human-robot team with additional external attributes. We propose Environment-adaptive Interaction Primitives (EalPs) as an extension of Interaction Primitives. In cooperation tasks between human and robot with different environmental conditions, EalPs not only improve the predicted motor skills of robot within a brief observed human motion, but also obtain the generalization ability to adapt to new environmental conditions by learning the relationships between each condition and the corresponding motor skills from training samples. Our method is validated in the collaborative task of covering objects by plastic bag with a humanoid Baxter robot. To achieve the task successfully, the robot needs to coordinate itself to its partner while also considering information about the object to be covered
Spin photocurrent, its spectra dependence, and current-induced spin polarization in an InGaAs/InAlAs two-dimensional electron gas
Converse effect of spin photocurrent and current induced spin polarization
are experimentally demonstrated in the same two-dimensional electron gas system
with Rashba spin splitting. Their consistency with the strength of the Rashba
coupling as measured from beating of the Shubnikov-de Haas oscillations reveals
a unified picture for the spin photocurrent, current-induced spin polarization
and spin orbit coupling. In addition, the observed spectral inversion of the
spin photocurrent indicates the system with dominating structure inversion
asymmetry.Comment: 13 pages, 4 figure
- …