4,465 research outputs found

    Spectral and optical properties in the antiphase stripe phase of the cuprate superconductors

    Full text link
    We investigate the superconducting order parameter, the spectral and optical properties in a stripe model with spin (charge) domain-derived scattering potential VsV_{s} (VcV_{c}). We show that the charge domain-derived scattering is less effective than the spin scattering on the suppression of superconductivity. For Vs≫VcV_{s}\gg V_{c}, the spectral weight concentrates on the (Ο€,0\pi,0) antinodal region, and a finite energy peak appears in the optical conductivity with the disappearance of the Drude peak. But for Vsβ‰ˆVcV_{s}\approx V_{c}, the spectral weight concentrates on the (Ο€/2,Ο€/2\pi/2,\pi/2) nodal region, and a residual Drude peak exists in the optical conductivity without the finite energy peak. These results consistently account for the divergent observations in the ARPES and optical conductivity experiments in several high-TcT_c cuprates, and suggest that the "insulating" and "metallic" properties are intrinsic to the stripe state, depending on the relative strength of the spin and charge domain-derived scattering potentials.Comment: 7 pages, 4 figure

    Coexistence of the antiferromagnetic and superconducting order and its effect on spin dynamics in electron-doped high-TcT_{c} cuprates

    Full text link
    In the framework of the slave-boson approach to the tβˆ’tβ€²βˆ’tβ€²β€²βˆ’Jt-t'-t''-J model, it is found that for electron-doped high-TcT_c cuprates, the staggered antiferromagnetic (AF) order coexists with superconducting (SC) order in a wide doping level ranged from underdoped to nearly optimal doping at the mean-field level. In the coexisting phase, it is revealed that the spin response is commensurate in a substantial frequency range below a crossover frequency Ο‰c\omega_{c} for all dopings considered, and it switches to the incommensurate structure when the frequency is higher than Ο‰c\omega_{c}. This result is in agreement with the experimental measurements. Comparison of the spin response between the coexisting phase and the pure SC phase with a dx2βˆ’y2d_{x^{2}-y^{2}}-wave pairing plus a higher harmonics term (DP+HH) suggests that the inclusion of the two-band effect is important to consistently account for both the dispersion of the spin response and the non-monotonic gap behavior in the electron-doped cuprates.Comment: 6 pages, 5 figure

    Observation of electric current induced by optically injected spin current

    Get PDF
    A normally incident light of linear polarization injects a pure spin current in a strip of 2-dimensional electron gas with spin-orbit coupling. We report observation of an electric current with a butterfly-like pattern induced by such a light shed on the vicinity of a crossbar shaped InGaAs/InAlAs quantum well. Its light polarization dependence is the same as that of the spin current. We attribute the observed electric current to be converted from the optically injected spin current caused by scatterings near the crossing. Our observation provides a realistic technique to detect spin currents, and opens a new route to study the spin-related science and engineering in semiconductors.Comment: 15 pages, 4 figure

    DP-starJ: A Differential Private Scheme towards Analytical Star-Join Queries

    Full text link
    Star-join query is the fundamental task in data warehouse and has wide applications in On-line Analytical Processing (OLAP) scenarios. Due to the large number of foreign key constraints and the asymmetric effect in the neighboring instance between the fact and dimension tables, even those latest DP efforts specifically designed for join, if directly applied to star-join query, will suffer from extremely large estimation errors and expensive computational cost. In this paper, we are thus motivated to propose DP-starJ, a novel Differentially Private framework for star-Join queries. DP-starJ consists of a series of strategies tailored to specific features of star-join, including 1) we unveil the different effect of fact and dimension tables on the neighboring database instances, and accordingly revisit the definitions tailored to different cases of star-join; 2) we propose Predicate Mechanism (PM), which utilizes predicate perturbation to inject noise into the join procedure instead of the results; 3) to further boost the robust performance, we propose a DP-compliant star-join algorithm for various types of star-join tasks based on PM. We provide both theoretical analysis and empirical study, which demonstrate the superiority of the proposed methods over the state-of-the-art solutions in terms of accuracy, efficiency, and scalability
    • …
    corecore