4 research outputs found

    Research on the detection and de-noising algorithm of wearable ECG signal based on capacitive coupling electrode

    No full text
    In most traditional electrocardiogram (ECG) detection procedures, wet electrodes may cause problems of inconvenience and glue dehydrates over time. The paper designs a kind of wearable capacitive coupling electrode based on the principle of coupling capacity. Due to this kind of wearable capacitive coupling electrode, an improved wavelet threshold de-noising algorithm is proposed. The algorithm uses the improved threshold function to deal with wavelet coefficients after decomposition and reconstruct ECG signal combining the characteristics of wavelet coefficients of ECG signal and noise. The MIT-BIH database was used to validate the algorithm and it indicates that the algorithm can effectively eliminate the noise. The SNR increased by 10.72% and the RMSE reduced by 27.29% compared to the other methods, such as, smoothing filtering, morphological filtering and empirical mode decomposition. The results of the experiment show that the system can accurately detect the main characteristics of the ECG signal

    Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    No full text
    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias
    corecore