21 research outputs found

    The Position and Function of Macroscopic Analysis in the Failure Analysis of Railway Fasteners

    Get PDF
    Macroscopic analysis plays an important role in failure analysis, which cannot be replaced by other analyzing methods. In recent years, with the development of characterization techniques, more and more engineers and technicians rely on the advanced analytical testing methods in the process of failure analysis, ignoring the methods and means of macroscopic analysis. This can easily lead to some wrong judgments. Therefore, this chapter will combine with the cases to explain the position and role of macroanalysis in the failure analysis of rail fastening clips and to offer references for engineers and technicians in relevant fields

    In Situ X-Ray Diffraction Analysis of Microstructure Evolution during Deep Cryogenic Treatment and Tempering of Tool Steels

    Get PDF
    Deep cryogenic treatment of tool steels, incorporated in conventional hardening and tempering, has been a topic of intensive research in recent years. Yet, the governing microstructural mechanisms involved in the deep cryogenic treatment of high-alloyed tool steels are still controversial. Thus, an in situ X-ray diffraction study is conducted on three tool steels X38CrMoV5-3, X153CrMoV12, and ~X190CrVMo20-4 to shed light on microstructural evolution during cryogenic treatment and subsequent tempering. For these high-alloyed tool steels, the transformation of retained austenite into martensite is detected during the cooling phase of the cryogenic treatment. A change in tetragonality of martensite occurs mainly in the heating phase of the subsequent tempering process, which indicates the diffusion of carbon and carbide precipitation from the martensite. The microstructure evolution of the tool steels after hardening, cryogenic treatment, and tempering is further examined by scanning electron microscopy. © 2021 The Authors. Steel Research International published by Wiley-VCH Gmb

    Induction of Escherichia coli Into a VBNC State by Continuous-Flow UVC and Subsequent Changes in Metabolic Activity at the Single-Cell Level

    Get PDF
    A viable but non-culturable (VBNC) state of bacteria induced by disinfection in water treatment poses serious health risks because of possible resuscitation of VBNC cells during transportation. In this study, a setup using continuous-flow ultraviolet (UVC) irradiation ranging from 0 to 172.2 mJ cm-2 was designed to simulate real-world disinfection in both drinking water (SDW) and reclaimed water (SRW) treatment plants. A systematic investigation of UVC-induced VBNC bacteria, including occurrence, resuscitation, and time-dependent recovery of metabolic activity during post-incubation, was conducted. Different techniques including two new ones of “single cell culture” and D2O-labeled single-cell Raman spectroscopy were employed to gain comprehensive insights into VBNC cells. Heterotrophic plate counts (HPC) and 5-cyano-2,3-ditoyl tetrazolium chloride flow cytometry (CTC-FCM) assay demonstrated that exposure to continuous-flow UVC can induce E. coli into a VBNC state. Membranes integrity and 16S rRNA transcription level of VBNC bacteria were demonstrated to be unaffected by UVC exposure even at a high dose of 172.2 mJ cm-2. Resuscitation of VBNC bacteria was identified in a more accurate way based on “single cell culture.” Finally, time-dependent evolution of metabolic activity of UVC-treated cells during post-incubation was examined by D2O-labeled Raman spectroscopy at a high-resolution of single-cell level. C-D Raman bands resulting from incorporation of D2O-derived D into bacterial biomass were used as a sensitive and quantitative indicator of bacterial metabolic activity. A lower UVC dose, longer post-incubation time, and higher initial number of bacteria were demonstrated to result in a faster recovery of metabolic activity. Heterogeneous metabolic activity and subpopulation with higher metabolic activity were also revealed by single-cell Raman, even for UVC-treated cells losing cultivability. The comprehensive assessment of VBNC bacteria in UVC-disinfected drinking and reclaimed water points out treatment deficiencies of UVC and the necessity to develop more effective strategies to eliminate VBNC cells

    Gas Atomization of Duplex Stainless Steel Powder for Laser Powder Bed Fusion

    No full text
    Duplex stainless steel powders for laser additive manufacturing have not been developed extensively. In this study, the melts of a super duplex stainless steel X2CrNiMoCuWN25-7-4 (AISI F55, 1.4501) were atomized with different process gases (Ar or N2) at different atomization gas temperatures. The process gas N2 in the melting chamber leads to a higher nitrogen dissolution in the steel and a higher nitrogen content of the atomized powders. The argon-atomized powders have more gas porosity inside the particles than the nitrogen-atomized powders. In addition, the higher the atomization gas temperature, the finer the powder particles. The duplex stainless steel powders showed good processability during PBF-LB/M (Laser powder bed fusion). The gas entrapment in the powder particles, regardless of the gas chemistry and the gas content, appears to have a negligible effect on the porosity of the as-built parts

    Low-Temperature Induced Martensitic Transformation Enhancing Mechanical Properties of Metastable Fe-Ni-P Alloy

    No full text
    The metastable Fe-Ni-P alloy with phosphorus (P) solid-solution structure has been fabricated by spark plasma sintering. Its face-centered cubic (FCC) matrix without the precipitation of phosphide attains a high plasticity and an excellent strain hardening ability at room temperature. This Fe-Ni-P alloy is subjected to cryogenic treatment at various temperatures (−20 °C and −50 °C), to investigate the role of phosphorus on the microstructural evolution and mechanical properties of γ-(Fe-Ni) alloy at low temperatures. The results indicate that the addition of phosphorus can destabilize the Fe-Ni-P alloy and facilitate its martensitic transformation during cryogenic treatment. P-doping does not lead to obvious embrittlement of Fe-Ni-P alloy at low temperatures, but strengthens the alloy by promoting microstructure evolution. The Fe-Ni-P alloy has high plasticity and good strain hardening ability after treated at −20 °C, and is converted to acicular martensite structure after being treated at −50 °C, resulting in a significant increase in its hardness (433 HV) and compressive yield strength (1271 MPa). Developing this Fe-Ni-P alloy as a load-bearing component for low-temperature conditions shows great promise

    Enhancing Mechanical Properties of the Spark Plasma Sintered Inconel 718 Alloy by Controlling the Nano-Scale Precipitations

    No full text
    The present study aimed to optimize the phase constituents and mechanical properties of the spark plasma sintered (SPS) Inconel 718 (IN718) alloy. A series of heat treatment routes were designed based on the phase relations in IN718 and performed for the optimization. The microstructure and phase compositions of the SPS IN718 alloys were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and transmission electron microscopy (TEM). The mechanical properties of the samples were characterized at room temperature and at 650 °C. The results showed that large amounts of γ” (Ni3Nb) and γ’ (Ni3(Al, Ti)) strengthening phases precipitated in the IN718 alloy after direct aging (DA) of the as-fabricated sample. Moreover, the mechanical properties of the DA sample were comparable to that of the best one of the solution-treated and aged counterparts. The analysis showed that the rapid sintering and solid solution treatment of the IN718 alloy were achieved simultaneously by SPS. In the case of the SPS IN718 material, the direct aging regime had the same heat treatment effect as the conventional solid solution and aging treatment. This contributes toward improving the production efficiency and reduces manufacturing costs in the actual production process

    Development of micro rotary swaging tools of graded tool steel via co-spray forming

    No full text
    In order to meet the requirements of micro rotary swaging, the local properties of the tools should be adjusted properly with respect to abrasive and adhesive wear, compressive strength, and toughness. These properties can be optimally combined by using different materials in specific regions of the tools, with a gradual transition in between to reduce critical stresses at the interface during heat treatment and in the rotary swaging process. In this study, a newly developed co-spray forming process was used to produce graded tool materials in the form of a flat product. The graded deposits were subsequently hot rolled and heat treated to achieve an optimal microstructure and advanced properties. Micro plunge rotary swaging tools with fine geometrical structures were machined from the hot rolled materials. The new forming tools were successfully applied in the micro plunge rotary swaging of wires of stainless steel

    Development of micro rotary swaging tools of graded tool steel via co-spray forming

    No full text
    In order to meet the requirements of micro rotary swaging, the local properties of the tools should be adjusted properly with respect to abrasive and adhesive wear, compressive strength, and toughness. These properties can be optimally combined by using different materials in specific regions of the tools, with a gradual transition in between to reduce critical stresses at the interface during heat treatment and in the rotary swaging process. In this study, a newly developed co-spray forming process was used to produce graded tool materials in the form of a flat product. The graded deposits were subsequently hot rolled and heat treated to achieve an optimal microstructure and advanced properties. Micro plunge rotary swaging tools with fine geometrical structures were machined from the hot rolled materials. The new forming tools were successfully applied in the micro plunge rotary swaging of wires of stainless steel

    Development of micro rotary swaging tools of graded tool steel via co-spray forming

    No full text
    In order to meet the requirements of micro rotary swaging, the local properties of the tools should be adjusted properly with respect to abrasive and adhesive wear, compressive strength, and toughness. These properties can be optimally combined by using different materials in specific regions of the tools, with a gradual transition in between to reduce critical stresses at the interface during heat treatment and in the rotary swaging process. In this study, a newly developed co-spray forming process was used to produce graded tool materials in the form of a flat product. The graded deposits were subsequently hot rolled and heat treated to achieve an optimal microstructure and advanced properties. Micro plunge rotary swaging tools with fine geometrical structures were machined from the hot rolled materials. The new forming tools were successfully applied in the micro plunge rotary swaging of wires of stainless steel
    corecore