41 research outputs found

    A Metric of Influential Spreading during Contagion Dynamics through the Air Transportation Network

    Get PDF
    The spread of infectious diseases at the global scale is mediated by long-range human travel. Our ability to predict the impact of an outbreak on human health requires understanding the spatiotemporal signature of early-time spreading from a specific location. Here, we show that network topology, geography, traffic structure and individual mobility patterns are all essential for accurate predictions of disease spreading. Specifically, we study contagion dynamics through the air transportation network by means of a stochastic agent-tracking model that accounts for the spatial distribution of airports, detailed air traffic and the correlated nature of mobility patterns and waiting-time distributions of individual agents. From the simulation results and the empirical air-travel data, we formulate a metric of influential spreading––the geographic spreading centrality––which accounts for spatial organization and the hierarchical structure of the network traffic, and provides an accurate measure of the early-time spreading power of individual nodes

    Prognostic utility of serum free light chain ratios and heavy-light chain ratios in multiple myeloma in three PETHEMA/GEM phase III clinical trials

    Get PDF
    We investigated the prognostic impact and clinical utility of serum free light chains (sFLC) and serum heavy-light chains (sHLC) in patients with multiple myeloma treated according to the GEM2005MENOS65, GEM2005MAS65, and GEM2010MAS65 PETHEMA/GEM phase III clinical trials. Serum samples collected at diagnosis were retrospectively analyzed for sFLC (n = 623) and sHLC (n = 183). After induction or autologous transplantation, 309 and 89 samples respectively were available for sFLC and sHLC assays. At diagnosis, a highly abnormal (HA) sFLC ratio (sFLCr) (32) was not associated with higher risk of progression. After therapy, persistence of involved-sFLC levels >100 mg/L implied worse survival (overall survival [OS], P = 0.03; progression-free survival [PFS], P = 0.007). Among patients that achieved a complete response, sFLCr normalization did not necessarily indicate a higher quality response. We conducted sHLC investigations for IgG and IgA MM. Absolute sHLC values were correlated with monoclonal protein levels measured with serum protein electrophoresis. At diagnosis, HA-sHLCrs (73) showed a higher risk of progression (P = 0.006). Additionally, involved-sHLC levels >5 g/L after treatment were associated with shorter survival (OS, P = 0.001; PFS, P = 0.018). The HA-sHLCr could have prognostic value at diagnosis; absolute values of involved-sFLC >100 mg/L and involved-sHLC >5 g/L could have prognostic value after treatment

    A Very High-Order Accurate Staggered Finite Volume Scheme for the Stationary Incompressible Navier–Stokes and Euler Equations on Unstructured Meshes

    Get PDF
    International audienceWe propose a sixth-order staggered finite volume scheme based on polynomial reconstructions to achieve high accurate numerical solutions for the incompressible Navier-Stokes and Euler equations. The scheme is equipped with a fixed-point algorithm with solution relaxation to speed-up the convergence and reduce the computation time. Numerical tests are provided to assess the effectiveness of the method to achieve up to sixth-order con-2 Ricardo Costa et al. vergence rates. Simulations for the benchmark lid-driven cavity problem are also provided to highlight the benefit of the proposed high-order scheme

    Sequential approach to joint flow-seismic inversion for improved characterization of fractured media

    Get PDF
    Seismic interpretation of subsurface structures is traditionally performed without any account of flow behavior. Here we present a methodology for characterizing fractured geologic reservoirs by integrating flow and seismic data. The key element of the proposed approach is the identification—within the inversion—of the intimate relation between fracture compliance and fracture transmissivity, which determine the acoustic and flow responses of a fractured reservoir, respectively. Owing to the strong (but highly uncertain) dependence of fracture transmissivity on fracture compliance, the modeled flow response in a fractured reservoir is highly sensitive to the geophysical interpretation. By means of synthetic models, we show that by incorporating flow data (well pressures and tracer breakthrough curves) into the inversion workflow, we can simultaneously reduce the error in the seismic interpretation and improve predictions of the reservoir flow dynamics. While the inversion results are robust with respect to noise in the data for this synthetic example, the applicability of the methodology remains to be tested for more complex synthetic models and field cases.Eni-MIT Energy Initiative Founding Member ProgramKorea (South). Ministry of Land, Transportation and Maritime Affairs (15AWMP-B066761-03

    The role of pore fluids in supershear earthquake ruptures

    No full text
    Abstract The intensity and damage potential of earthquakes are linked to the speed at which rupture propagates along sliding crustal faults. Most earthquakes are sub-Rayleigh, with ruptures that are slower than the surface Rayleigh waves. In supershear earthquakes, ruptures are faster than the shear waves, leading to sharp pressure concentrations and larger intensities compared with the more common sub-Rayleigh ones. Despite significant theoretical and experimental advances over the past two decades, the geological and geomechanical controls on rupture speed transitions remain poorly understood. Here we propose that pore fluids play an important role in explaining earthquake rupture speed: the pore pressure may increase sharply at the compressional front during rupture propagation, promoting shear failure ahead of the rupture front and accelerating its propagation into the supershear range. We characterize the transition from sub-Rayleigh to supershear rupture in fluid-saturated rock, and show that the proposed poroelastic weakening mechanism may be a controlling factor for intersonic earthquake ruptures

    Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network

    No full text
    The risk for a global transmission of flu-type viruses is strengthened by the physical contact between humans and accelerated through individual mobility patterns. The Air Transportation System plays a critical role in such transmissions because it is responsible for fast and long-range human travel, while its building components—the airports—are crowded, confined areas with usually poor hygiene. Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) consider hand hygiene as the most efficient and cost-effective way to limit disease propagation. Results from clinical studies reveal the effect of hand washing on individual transmissibility of infectious diseases. However, its potential as a mitigation strategy against the global risk for a pandemic has not been fully explored. Here, we use epidemiological modeling and data-driven simulations to elucidate the role of individual engagement with hand hygiene inside airports in conjunction with human travel on the global spread of epidemics. We find that, by increasing travelers engagement with hand hygiene at all airports, a potential pandemic can be inhibited by 24% to 69%. In addition, we identify 10 airports at the core of a cost-optimal deployment of the hand-washing mitigation strategy. Increasing hand-washing rate at only those 10 influential locations, the risk of a pandemic could potentially drop by up to 37%. Our results provide evidence for the effectiveness of hand hygiene in airports on the global spread of infections that could shape the way public-health policy is implemented with respect to the overall objective of mitigating potential population health crises

    Ranking of influential spreaders at early times from the geographic spreading centrality (GSC).

    No full text
    <p>The GSC metric predictions are in quantitative agreement with the results from the Monte Carlo study on the empirical model.</p

    Ranking of influential early-time spreaders by existing metrics.

    No full text
    <p>Shown are the results from the model simulations (black triangles), and comparison with the ranking provided by existing metrics of centrality and late-time influential spreading. (<i>a</i>) Normalized degree. (<i>b</i>) Normalized traffic. (<i>c</i>) Normalized betweenness centrality. (<i>d</i>) Normalized -shell centrality.</p
    corecore