59 research outputs found

    Nonlinear electrodynamics and the gravitational redshift of highly magnetised neutron stars

    Full text link
    The idea that the nonlinear electromagnetic interaction, i. e., light propagation in vacuum, can be geometrized was developed by Novello et al. (2000) and Novello & Salim (2001). Since then a number of physical consequences for the dynamics of a variety of systems have been explored. In a recent paper Mosquera Cuesta & Salim (2003) presented the first astrophysical study where such nonlinear electrodynamics (NLEDs) effects were accounted for in the case of a highly magnetized neutron star or pulsar. In that paper the NLEDs was invoked {\it a l\`a} Euler-Heisenberg, which is an infinite series expansion of which only the first term was used for the analisys. The immediate consequence of that study was an overall modification of the space-time geometry around the pulsar, which is ``perceived'', in principle, only by light propagating out of the star. This translates into an significant change in the surface redshift, as inferred from absorption (emission) lines observed from a super magnetized pulsar. The result proves to be even more dramatic for the so-called magnetars, pulsars endowed with magnetic (BB) fields higher then the Schafroth quantum electrodynamics critical BB-field. Here we demonstrate that the same effect still appears if one calls for the NLEDs in the form of the one rigorously derived by Born & Infeld (1934) based on the special relativistic limit for the velocity of approaching of an elementary particle to a pointlike electron [From the mathematical point of view, the Born & Infeld (1934) NLEDs is described by an exact Lagrangean, whose dynamics has been successfully studied in a wide set of physical systems.].Comment: Accepted for publication in Month. Not. Roy. Ast. Soc. latex file, mn-1.4.sty, 5 pages, 2 figure

    Magnetic collapse of a neutron gas: Can magnetars indeed be formed

    Full text link
    A relativistic degenerate neutron gas in equilibrium with a background of electrons and protons in a magnetic field exerts its pressure anisotropically, having a smaller value perpendicular than along the magnetic field. For critical fields the magnetic pressure may produce the vanishing of the equatorial pressure of the neutron gas. Taking it as a model for neutron stars, the outcome could be a transverse collapse of the star. This fixes a limit to the fields to be observable in stable neutron star pulsars as a function of their density. The final structure left over after the implosion might be a mixed phase of nucleons and meson condensate, a strange star, or a highly distorted black hole or black "cigar", but no any magnetar, if viewed as a super strongly magnetized neutron star. However, we do not exclude the possibility of a supersotrong magnetic fields arising in supernova explosions which lead directly to strange stars. In other words, if any magnetars exist, they cannot be neutron stars.Comment: 15 pages, 3 figures. European Physical Journal C in pres

    An origin for the main pulsation and overtones of SGR1900+14 during the August 27 (1998) superoutburst

    Full text link
    The crucial observation on the occurrence of subpulses (overtones) in the Power Spectral Density of the August 27 (1998) event from SGR1900+14, as discovered by BeppoSAX (Feroci et al. 1999), has received no consistent explanation in the context of the competing theories to explain the SGRs phenomenology: the magnetar and accretion-driven models. Based on the ultra-relativistic, ultracompact X-ray binary model introduced in the accompanying paper (Mosquera Cuesta 2004a), I present here a self-consistent explanation for such an striking feature. I suggest that both the fundamental mode and the overtones observed in SGR1900+14 stem from pulsations of a massive white dwarf (WD). The fundamental mode (and likely some of its harmonics) is excited because of the mutual gravitational interaction with its orbital companion (a NS, envisioned here as point mass object) whenever the binary Keplerian orbital frequency is a multiple integer number (mm) of that mode frequency (Pons et al. 2002). Besides, a large part of the powerful irradiation from the fireball-like explosion occurring on the NS (after partial accretion of disk material) is absorbed in different regions of the star driving the excitation of other multipoles (Podsiadlowski 1991,1995), i.e., the overtones (fluid modes of higher frequency). Part of this energy is then reemitted into space from the WD surface or atmosphere. This way, the WD lightcurve carries with it the signature of these pulsations inasmuch the way as it happens with the Sun pulsations in Helioseismology. It is shown that our theoretical prediction on the pulsation spectrum agrees quite well with the one found by BeppoSAX (Feroci et al. 1999). A feature confirmed by numerical simulations (Montgomery & Winget 2000).Comment: This paper was submitted as a "Letter to the Editor" of MNRAS in July 17/2004. Since that time no answer or referee report was provided to the Author [MNRAS publication policy limits reviewal process no longer than one month (+/- half more) for the reviewal of this kind of submission]. I hope this contribution is not receiving a similar "peer-reviewing" as given to the A. Dar and A. De Rujula's "Cannonball model for gamma-ray bursts", or to the R.K. Williams' "Penrose process for energy extraction from rotating black holes". The author welcomes criticisms and suggestions on this pape

    A white dwarf-neutron star relativistic binary model for soft gamma-ray repeaters

    Full text link
    A scenario for SGRs is introduced in which gravitational radiation reaction effects drive the dynamics of an ultrashort orbital period X-ray binary embracing a high-mass donor white dwarf (WD) to a rapidly rotating low magnetised massive neutron star (NS) surrounded by a thick, dense and massive accretion torus. Driven by GR reaction, sparsely, the binary separation reduces, the WD overflows its Roche lobe and the mass transfer drives unstable the accretion disk around the NS. As the binary circular orbital period is a multiple integer number (mm) of the period of the WD fundamental mode (Pons et al. 2002), the WD is since long pulsating at its fundamental mode; and most of its harmonics, due to the tidal interaction with its NS orbital companion. Hence, when the powerful irradiation glows onto the WD; from the fireball ejected as part of the disk matter slumps onto the NS, it is partially absorbed. This huge energy excites other WD radial (pp-mode) pulsations (Podsiadlowski 1991,1995). After each mass-transfer episode the binary separation (and orbital period) is augmented significantly (Deloye & Bildsten 2003; Al\'ecyan & Morsink 2004) due to the binary's angular momentum redistribution. Thus a new adiabatic inspiral phase driven by GR reaction starts which brings the binary close again, and the process repeats. This model allows to explain most of SGRs observational features: their recurrent activity, energetics of giant superoutbursts and quiescent stages, and particularly the intriguing subpulses discovered by BeppoSAX (Feroci et al. 1999), which are suggested here to be {\it overtones} of the WD radial fundamental mode (see the accompanying paper: Mosquera Cuesta 2004b).Comment: This paper was submitted as a "Letter to the Editor" of MNRAS in July 17/2004. Since that time no answer or referee report was provided to the Author [MNRAS publication policy limits reviewal process no longer than one month (+/- half more) for the reviewal of this kind of submission). I hope this contribution is not receiving a similar "peer-reviewing" as given to the A. Dar and A. De Rujula's "Cannonball model for gamma-ray bursts", or to the R.K. Williams' "Penrose process for energy extraction from rotating black holes". The author welcomes criticisms and suggestions on this pape

    Hubble Diagram of Gamma-Rays Bursts calibrated with Gurzadyan-Xue Cosmology

    Full text link
    Gamma-ray bursts (GRBs) being the most luminous among known cosmic objects carry an essential potential for cosmological studies if properly used as standard candles. In this paper we test with GRBs the cosmological predictions of the Gurzadyan-Xue (GX) model of dark energy, a novel theory that predicts, without any free parameters, the current vacuum fluctuation energy density close to the value inferred from the SNIa observations. We also compare the GX results with those predicted by the concordance scenario Λ\Lambda-CDM. According to the statistical approach by Schaefer (2007), the use of several empirical relations obtained from GRBs observables, after a consistent calibration for a specific model, enables one to probe current cosmological models. Based on this recently introduced method, we use the 69 GRBs sample collected by Schaefer (2007); and the most recently released SWIFT satellite data (Sakamoto et al. 2007) together with the 41 GRBs sample collected by Rizzuto et al. (2007), which has the more firmly determined redshifts. Both data samples span a distance scale up to redshift about 7. We show that the GX models are compatible with the Hubble diagram of the Schaefer (2007) 69 GRBs sample. Such adjustment is almost identical to the one for the concordance Λ\Lambda-CDM.Comment: 9 pages, 17 figures, 11 tables; Astr. & Astrophys. (in press
    • …
    corecore