23 research outputs found

    Ideal cardiovascular health and inflammation in European adolescents: The HELENA study

    Get PDF
    Background and aims Inflammation plays a key role in atherosclerosis and this process seems to appear in childhood. The ideal cardiovascular health index (ICHI) has been inversely related to atherosclerotic plaque in adults. However, evidence regarding inflammation and ICHI in adolescents is scarce. The aim is to assess the association between ICHI and inflammation in European adolescents. Methods and results As many as 543 adolescents (251 boys and 292 girls) from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study, a cross-sectional multi-center study including 9 European countries, were measured. C-reactive protein (CRP), complement factors C3 and C4, leptin and white blood cell counts were used to compute an inflammatory score. Multilevel linear models and multilevel logistic regression were used to assess the association between ICHI and inflammation controlling by covariates. Higher ICHI was associated with a lower inflammatory score, as well as with several individual components, both in boys and girls (p < 0.01). In addition, adolescents with at least 4 ideal components of the ICHI had significantly lower inflammatory score and lower levels of the study biomarkers, except CRP. Finally, the multilevel logistic regression showed that for every unit increase in the ICHI, the probability of having an inflammatory profile decreased by 28.1% in girls. Conclusion Results from this study suggest that a better ICHI is associated with a lower inflammatory profile already in adolescence. Improving these health behaviors, and health factors included in the ICHI, could play an important role in CVD prevention

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Características físicas, físico-químicas e sensoriais da água de frutos de coqueiro anão verde oriundo de produção convencional e orgânica Physical, physical-chemical and sensorial characteristics of coconut water from green-dwarfed coconut palm from conventional and organic production

    No full text
    Neste trabalho, objetivou-se comparar a qualidade da água de coco obtida de frutos de coqueiro anã verde, produzidos em dois sistemas distintos de produção: convencional e orgânico, mediante as análises físicas (cor da casca, peso, volume, comprimento e diâmetro), físico-químicas (sólidos totais, acidez titulável, pH, turbidez, açúcares solúveis totais e redutores) e os minerais: (Ca, Mg, Na, K, Fe, Mn, P, sulfato, cloreto e C.E.); e análise sensorial. Foram realizados os seguintes parâmetros sensoriais: avaliação global, turbidez, doçura e sabor. Os frutos utilizados nesse experimento encontravam-se com 210 dias após a polinização das inflorescências e foram provenientes de dois plantios comerciais do município de Trairí- Ceará. O experimento foi desenvolvido no laboratório de Fisiologia e Tecnologia de Pós-Colheita da Embrapa Agroindústria Tropical, Fortaleza-CE. Foi observado, a partir dos resultados das análises físicas, que o coco produzido em sistema convencional é melhor do que os produzidos organicamente. Para todas as variáveis estudadas, porém apenas as medições de comprimento e peso mostraram diferenças importantes por meio do teste Tukey em um nível de 5% de probabilidade. Nas análises físico-químicas e análise sensorial não houve diferença significativa para os tratamentos.<br>This work aimed to assess and compare the quality of coconut water produced in two different systems: standard and organic. The physical characteristics of the fruit were described (skin color, weight, water volume, length, and diameter), the physical-chemical characteristics of the water were assessed (total solid content, total titrable acidity, pH, turbidity, reducing and total soluble sugars), the mineral content was checked (Fe, P, K, Na, Ca, Mg, Mn, sulphate, chloride, and C.E.), and the sensory analysis was conducted assessing the following parameters: overall evaluation, turbidity, sweetness, and flavor. The fruits used in this experiment were harvested 210 days after the pollination of the flowers and were from two commercial plantations at the municipality of Trairí-Ceara.The experience was developed at the Physiology and Technology Post-Harvest Laboratory of Embrapa Tropical Agroindustry, Fortaleza-CE. We observed, from the results of the physical analysis, that the coconut produced in the standard system is better than that produced organically, for all of the studied variables. However, only the measurements of length and weight showed important differences through the Tukey test at the level of 5% probability. The physical-chemical and sensory analysis did not show significant differences between the treatments
    corecore