334 research outputs found
Adjuvants : an essential component of neisseria vaccines
Adjuvants may be classified into delivery systems and immune potentiator or modulator molecules based on their mechanism of action. Neisseria vaccines containing traditional adjuvants such as aluminium salts have existed for long time, but meningitis caused by Neisseria meningitidis serogroups, particularly serogroup B, continues to be a global health problem. Novel strategies have applied in silico and recombinant technologies to develop "universal" antigens (e.g. proteins, peptides and plasmid DNA) for vaccines, but these antigens have been shown to be poorly immunogenic even when alum adjuvanted, implying a need for better vaccine design. In this work we review the use of natural, detoxified, or synthetic molecules in combination with antigens to activate the innate immune system and to modulate the adaptive immune responses. In the main, antigenic and imune potentiator signals are delivered using nano-, micro-particles, alum, or emulsions. The importance of interaction between adjuvants and antigens to activate and target dendritic cells, the bridge between the innate and adaptive immune systems, will be discussed. In addition, nasal vaccine strategies based on the development of mucosal adjuvants and Neisseria derivatives to eliminate the pathogen at the site of infection provide promising adjuvants effective not only against respiratory pathogens, but also against pathogens responsible for enteric and sexually transmitted diseases
Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response.
The Frank-Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16-a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank-Starling response
Human prophylactic vaccine adjuvants and their determinant role in new vaccine formulations
Adjuvants have been considered for a long time to be an accessory and empirical component of vaccine formulations. However, accumulating evidence of their crucial role in initiating and directing the immune response has increased our awareness of the importance of adjuvant research in the past decade. Nevertheless, the importance of adjuvants still is not fully realized by many researchers working in the vaccine field, who are involved mostly in the search for better target antigens. The choice of a proper adjuvant can be determinant for obtaining the best results for a given vaccine candidate, but it is restricted due to intellectual property and know-how issues. Consequently, in most cases the selected adjuvant continues to be the aluminum salt, which has a record of safety, but predominantly constitutes a delivery system (DS). Ideally, new strategies should combine immune potentiators (IP) and DS by mixing both compounds or by obtaining structures that contain both IP and DS. In addition, the term immune polarizer has been introduced as an essential concept in the vaccine design strategies. Here, we review the theme, with emphasis on the discussion of the few licensed new adjuvants, the need for safe mucosal adjuvants and the adjuvant/immunopotentiating activity of conjugation. A summary of toxicology and regulatory issues will also be discussed, and the Finlay Adjuvant Platform is briefly summarized
oMEGACat I: MUSE spectroscopy of 300,000 stars within the half-light radius of Centauri
Omega Centauri ( Cen) is the most massive globular cluster of the
Milky Way and has been the focus of many studies that reveal the complexity of
its stellar populations and kinematics. However, most previous studies have
used photometric and spectroscopic datasets with limited spatial or magnitude
coverage, while we aim to investigate it having full spatial coverage out to
its half-light radius and stars ranging from the main sequence to the tip of
the red giant branch. This is the first paper in a new survey of Cen
that combines uniform imaging and spectroscopic data out to its half-light
radius to study its stellar populations, kinematics, and formation history. In
this paper, we present an unprecedented MUSE spectroscopic dataset combining 87
new MUSE pointings with previous observations collected from guaranteed time
observations. We extract spectra of more than 300,000 stars reaching more than
two magnitudes below the main sequence turn-off. We use these spectra to derive
metallicity and line-of-sight velocity measurements and determine robust
uncertainties on these quantities using repeat measurements. Applying quality
cuts we achieve signal-to-noise ratios of 16.47/73.51 and mean metallicity
errors of 0.174/0.031 dex for the main sequence stars (18 mag 22 mag) and red giant branch stars (16 mag 10
mag), respectively. We correct the metallicities for atomic diffusion and
identify foreground stars. This massive spectroscopic dataset will enable
future studies that will transform our understanding of Cen, allowing
us to investigate the stellar populations, ages, and kinematics in great
detail.Comment: 27 pages, 18 figures, 3 tables, accepted for publication in ApJ, the
catalog will be available in the online material of the published articl
Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions
Peripheral Delivery of a CNS Targeted, Metalo-Protease Reduces Aβ Toxicity in a Mouse Model of Alzheimer's Disease
Alzheimer's disease (AD), an incurable, progressive neurodegenerative disorder, is the most common form of dementia. Therapeutic options have been elusive due to the inability to deliver proteins across the blood-brain barrier (BBB). In order to improve the therapeutic potential for AD, we utilized a promising new approach for delivery of proteins across the BBB. We generated a lentivirus vector expressing the amyloid β-degrading enzyme, neprilysin, fused to the ApoB transport domain and delivered this by intra-peritoneal injection to amyloid protein precursor (APP) transgenic model of AD. Treated mice had reduced levels of Aβ, reduced plaques and increased synaptic density in the CNS. Furthermore, mice treated with the neprilysin targeting the CNS had a reversal of memory deficits. Thus, the addition of the ApoB transport domain to the secreted neprilysin generated a non-invasive therapeutic approach that may be a potential treatment in patients with AD
Recommended from our members
Religious transformations in the Middle Ages: towards a new archaeological agenda
The study of religious change in Europe between the collapse of the Roman Empire and the Reformation forms one of the cornerstones of medieval archaeology but has been riven by period, denominational and geographical divisions. This paper lays the groundwork for a fundamental rethink of archaeological approaches to medieval religions, by adopting a holistic framework that places Christian, pagan, Islamic and Jewish case studies of religious transformation in a long-term, comparative perspective. Focused around the analytical themes of ‘hybridity and resilience’ and ‘tempo and trajectories’, our approach shifts attention away from the singularities of national narratives of religious conversion towards a deeper understanding of how religious beliefs, practices and identity were renegotiated by medieval people in their daily lives
The inhibition of Bid expression by Akt leads to resistance to TRAIL-induced apoptosis in ovarian cancer cells
Epithelial ovarian cancer (EOC) cells often show increased activity of the PI3K/Akt pathway. In addition, we have previously shown that EOC ascites induce Akt activation in the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive EOC cell line, CaOV3, leading to TRAIL-mediated apoptosis inhibition. In this study, we investigated the role of Akt in intrinsic resistance to TRAIL, which is common in EOC cells. We report that Akt activation reduces the sensitivity of EOC cells to TRAIL. TRAIL-resistant SKOV3ip1 and COV2 cells were sensitized to TRAIL-induced apoptosis by PI3K or Akt inhibitors although inhibition of PI3K/Akt signaling pathway did not interfere with the recruitment and processing of caspase-8 to the death-inducing signaling complex. Conversely, overexpression of Akt1 in TRAIL-sensitive cells promoted resistance to TRAIL. Although the fact that TRAIL-induced caspase-8 activation was observed in both sensitive and resistant cell lines, Bid cleavage occurred only in sensitive cells or in SKOV3ip1 cells treated with LY294002. Bid expression was low in resistant cells and Akt activation downregulated its expression. Depletion of Bid by siRNA in OVCAR3 cells was associated with a decrease in TRAIL-mediated apoptosis. Overexpression of Bid only in SKOV3ip1 cells enhanced TRAIL-induced apoptosis. Simultaneous blockade of Akt pathway further increased TRAIL-induced apoptosis. Thus, Akt acts upstream of mitochondria and inhibits TRAIL-induced apoptosis by decreasing Bid protein levels and possibly inhibiting its cleavage
- …