191 research outputs found
Quantum fluctuations in one-dimensional arrays of condensates
The effects of quantum and thermal fluctuations upon the fringe structure
predicted to be observable in the momentum distribution of coupled
Bose-Einstein condensates are studied by the effective-potential method. For a
double-well trap, the coherence factor recently introduced by Pitaevskii and
Stringari [Phys. Rev. Lett. 87, 180402 (2001)] is calculated using the
effective potential approach and is found in good agreement with their result.
The calculations are extended to the case of a one-dimensional array of
condensates, showing that quantum effects are essentially described through a
simple renormalization of the energy scale in the classical analytical
expression for the fringe structure. The consequences for the experimental
observability are discussed.Comment: RevTeX, 4 pages, 5 eps figures (published version with updated
references
Heisenberg antiferromagnet on the square lattice for S>=1
Theoretical predictions of a semiclassical method - the pure-quantum
self-consistent harmonic approximation - for the correlation length and
staggered susceptibility of the Heisenberg antiferromagnet on the square
lattice (2DQHAF) agree very well with recent quantum Monte Carlo data for S=1,
as well as with experimental data for the S=5/2 compounds Rb2MnF4 and KFeF4.
The theory is parameter-free and can be used to estimate the exchange coupling:
for KFeF4 we find J=2.33 +- 0.33 meV, matching with previous determinations. On
this basis, the adequacy of the quantum nonlinear sigma model approach in
describing the 2DQHAF when S>=1 is discussed.Comment: 4 pages RevTeX file with 5 figures included by psfi
Thermodynamics of the quantum easy-plane antiferromagnet on the triangular lattice
The classical XXZ triangular-lattice antiferromagnet (TAF) shows both an
Ising and a BKT transition, related to the chirality and the in-plane spin
components, respectively. In this paper the quantum effects on the
thermodynamic quantities are evaluated by means of the pure-quantum
self-consistent harmonic approximation (PQSCHA), that allows one to deal with
any spin value through classical MC simulations. We report the internal energy,
the specific heat, and the in-plane correlation length of the quantum XX0 TAF,
for S=1/2, 1, 5/2. The quantum transition temperatures turn out to be smaller
the smaller the spin, and agree with the few available theoretical and
numerical estimates.Comment: 4 pages,3 postscript figure
Quantum thermodynamics of systems with anomalous dissipative coupling
The standard {\em system-plus-reservoir} approach used in the study of
dissipative systems can be meaningfully generalized to a dissipative coupling
involving the momentum, instead of the coordinate: the corresponding equation
of motion differs from the Langevin equation, so this is called {\em anomalous}
dissipation. It occurs for systems where such coupling can indeed be derived
from the physical analysis of the degrees of freedom which can be treated as a
dissipation bath. Starting from the influence functional corresponding to
anomalous dissipation, it is shown how to derive the effective classical
potential that gives the quantum thermal averages for the dissipative system in
terms of classical-like calculations; the generalization to many degrees of
freedom is given. The formalism is applied to a single particle in a
double-well and to the discrete model. At variance with the standard
case, the fluctuations of the coordinate are enhanced by anomalous dissipative
coupling.Comment: 12 pages, 5 figures, to be published in Phys. Rev.
Spectral shapes of solid neon
We present a Path Integral Monte Carlo calculation of the first three moments
of the displacement-displacement correlation functions of solid neon at
different temperatures for longitudinal and transverse phonon modes. The
Lennard-Jones potential is considered. The relevance of the quantum effects on
the frequency position of the peak and principally on the line-width of the
spectral shape is clearly pointed out. The spectrum is reconstructed via a
continued fraction expansion; the approximations introduced using the effective
potential quantum molecular dynamics are discussed.Comment: 3 pages, 2 figures, 3 table
Quantum effects on the BKT phase transition of two-dimensional Josephson arrays
The phase diagram of two dimensional Josephson arrays is studied by means of
the mapping to the quantum XY model. The quantum effects onto the
thermodynamics of the system can be evaluated with quantitative accuracy by a
semiclassical method, the {\em pure-quantum self-consistent harmonic
approximation}, and those of dissipation can be included in the same framework
by the Caldeira-Leggett model. Within this scheme, the critical temperature of
the superconductor-to-insulator transition, which is a
Berezinskii-Kosterlitz-Thouless one, can be calculated in an extremely easy way
as a function of the quantum coupling and of the dissipation mechanism.
Previous quantum Monte Carlo results for the same model appear to be rather
inaccurate, while the comparison with experimental data leads to conclude that
the commonly assumed model is not suitable to describe in detail the real
system.Comment: 4 pages, 2 figures, to be published in Phys. Rev.
Kinetic energy of solid neon by Monte Carlo with improved Trotter- and finite-size extrapolation
The kinetic energy of solid neon is calculated by a path-integral Monte Carlo
approach with a refined Trotter- and finite-size extrapolation. These accurate
data present significant quantum effects up to temperature T=20 K. They confirm
previous simulations and are consistent with recent experiments.Comment: Text and figures revised for minor corrections (4 pages, 3 figures
included by psfig
Dipolar interaction and incoherent quantum tunneling: a Monte Carlo study of magnetic relaxation
We study the magnetic relaxation of a system of localized spins interacting
through weak dipole interactions, at a temperature large with respect to the
ordering temperature but low with respect to the crystal field level splitting.
The relaxation results from quantum spin tunneling but is only allowed on sites
where the dipole field is very small. At low times, the magnetization decrease
is proportional to as predicted by Prokofiev and Stamp, and at long
times the relaxation can be described as an extension of a relaxed zone. The
results can be directly compared with very recent experimental data on Fe_8
molecular clusters.Comment: 9 pages, 11 figures; accepted for publication on Eur. Phys. J.
The quantum Heisenberg antiferromagnet on the square lattice
The pure-quantum self-consistent harmonic approximation, a semiclassical
method based on the path-integral formulation of quantum statistical mechanics,
is applied to the study of the thermodynamic behaviour of the quantum
Heisenberg antiferromagnet on the square lattice (QHAF). Results for various
properties are obtained for different values of the spin and successfully
compared with experimental data.Comment: Proceedings of the Conference "Path Integrals from peV to TeV - 50
Years from Feynman's paper" (Florence, August 1998) -- 2 pages, ReVTeX, 2
figure
- …