364 research outputs found

    Effective Hamiltonian with holomorphic variables

    Full text link
    The pure-quantum self-consistent harmonic approximation (PQSCHA) permits to study a quantum system by means of an effective classical Hamiltonian. In this work the PQSCHA is reformulated in terms of the holomorphic variables connected to a set of bosonic operators. The holomorphic formulation, based on the olomorphic path integral for the Weyl symbol of the density matrix, makes it possible to directly approach general Hamiltonians given in terms of bosonic creation and annihilation operators.Comment: Proceedings of the Conference "Path Integrals from peV to TeV - 50 Years from Feynman's paper" (Florence, August 1998) -- 2 pages, ReVTe

    Effective Hamiltonian with holomorphic variables

    Full text link
    The pure-quantum self-consistent harmonic approximation (PQSCHA) permits to study a quantum system by means of an effective classical Hamiltonian - depending on quantum coupling and temperature - and classical-like expressions for the averages of observables. In this work the PQSCHA is derived in terms of the holomorphic variables connected to a set of bosonic operators. The holomorphic formulation, based on the path integral for the Weyl symbol of the density matrix, makes it possible to approach directly general Hamiltonians given in terms of bosonic creation and annihilation operators.Comment: 11 pages, no figures (2nd version: few mistakes fixed in Sects. IV-V

    Effective Potential and Quantum Dynamical Correlators

    Full text link
    The approach to the calculation of quantum dynamical correlation functions is presented in the framework of the Mori theory. An unified treatment of classic and quantum dynamics is given in terms of Weyl representation of operators and holomorphic variables. The range of validity of an approximate molucular dynamics is discussedComment: 8 pages, Latex fil

    Quantum fluctuations in one-dimensional arrays of condensates

    Full text link
    The effects of quantum and thermal fluctuations upon the fringe structure predicted to be observable in the momentum distribution of coupled Bose-Einstein condensates are studied by the effective-potential method. For a double-well trap, the coherence factor recently introduced by Pitaevskii and Stringari [Phys. Rev. Lett. 87, 180402 (2001)] is calculated using the effective potential approach and is found in good agreement with their result. The calculations are extended to the case of a one-dimensional array of condensates, showing that quantum effects are essentially described through a simple renormalization of the energy scale in the classical analytical expression for the fringe structure. The consequences for the experimental observability are discussed.Comment: RevTeX, 4 pages, 5 eps figures (published version with updated references

    Minimal coupling in oscillator models of quantum dissipation

    Full text link
    The dissipative harmonic oscillator has two representations. In the first representation the central oscillator couples with its position to an oscillator bath. In the second one it couples with its momentum to the bath. Both representations are related by a unitary transformation. If the central oscillator couples with its position and momentum to two independent baths, no such unitary transformation exists. We discuss two possible models of this type and their physical relevance

    Heisenberg antiferromagnet on the square lattice for S>=1

    Full text link
    Theoretical predictions of a semiclassical method - the pure-quantum self-consistent harmonic approximation - for the correlation length and staggered susceptibility of the Heisenberg antiferromagnet on the square lattice (2DQHAF) agree very well with recent quantum Monte Carlo data for S=1, as well as with experimental data for the S=5/2 compounds Rb2MnF4 and KFeF4. The theory is parameter-free and can be used to estimate the exchange coupling: for KFeF4 we find J=2.33 +- 0.33 meV, matching with previous determinations. On this basis, the adequacy of the quantum nonlinear sigma model approach in describing the 2DQHAF when S>=1 is discussed.Comment: 4 pages RevTeX file with 5 figures included by psfi

    Thermodynamics of the quantum easy-plane antiferromagnet on the triangular lattice

    Full text link
    The classical XXZ triangular-lattice antiferromagnet (TAF) shows both an Ising and a BKT transition, related to the chirality and the in-plane spin components, respectively. In this paper the quantum effects on the thermodynamic quantities are evaluated by means of the pure-quantum self-consistent harmonic approximation (PQSCHA), that allows one to deal with any spin value through classical MC simulations. We report the internal energy, the specific heat, and the in-plane correlation length of the quantum XX0 TAF, for S=1/2, 1, 5/2. The quantum transition temperatures turn out to be smaller the smaller the spin, and agree with the few available theoretical and numerical estimates.Comment: 4 pages,3 postscript figure

    Quantum thermodynamics of systems with anomalous dissipative coupling

    Full text link
    The standard {\em system-plus-reservoir} approach used in the study of dissipative systems can be meaningfully generalized to a dissipative coupling involving the momentum, instead of the coordinate: the corresponding equation of motion differs from the Langevin equation, so this is called {\em anomalous} dissipation. It occurs for systems where such coupling can indeed be derived from the physical analysis of the degrees of freedom which can be treated as a dissipation bath. Starting from the influence functional corresponding to anomalous dissipation, it is shown how to derive the effective classical potential that gives the quantum thermal averages for the dissipative system in terms of classical-like calculations; the generalization to many degrees of freedom is given. The formalism is applied to a single particle in a double-well and to the discrete ϕ4\phi^4 model. At variance with the standard case, the fluctuations of the coordinate are enhanced by anomalous dissipative coupling.Comment: 12 pages, 5 figures, to be published in Phys. Rev.
    corecore