2 research outputs found

    Allelopathic studies with furanocoumarins isolated from Ducrosia anethifolia. vitro and in silico investigations to protect legumes, rice and grain crops

    Get PDF
    Six different furanocoumarins were isolated from the aerial parts of Ducrosia anethifolia and tested in vitro for plant cell elongation in etiolated wheat coleoptile. They were also tested for their ability to control three different weeds: ribwort plantain, annual ryegrass, and common purslane. These compounds exhibited strong inhibition of plant cell elongation. In the case of (+)-heraclenin, the IC50 was lower than 20 mu M, indicating a better inhibition than the positive control Logran (R). Computational experiments for docking and molecular dynamics revealed for the investigated furanocoumarins bearing an epoxide moiety an improved fitting and stronger interaction with the auxin-like TIR1 ubiquitin ligase. Furthermore, the formed inhibition complex remained also stable during dynamic evaluation. Bidental interaction at the active site, along with an extended hydrogen-bond lifetime, explained the enhanced activity of the epoxides. The in vitro weed bioassay results showed that Plantago lan-ceolata was the most affected weed for germination, root, and shoot development. In addition, (+)-heraclenin displayed better inhibition values than positive control even at 300 mu M concentration

    Anti-Atherogenic Properties of Allium ursinum Liophylisate: Impact on Lipoprotein Homeostasis and Cardiac Biomarkers in Hypercholesterolemic Rabbits

    Get PDF
    The present investigation evaluates the capacity of Allium ursinum (wild garlic) leaf lyophilisate (WGLL; alliin content: 0.261%) to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i) cholesterol-free rabbit chow (control); (ii) rabbit chow containing 2% cholesterol (hypercholesterolemic, HC); (iii) rabbit chow containing 2% cholesterol + 2% WGLL (hypercholesterolemic treated, HCT); for eight weeks. At the zero- and eight-week time points, echocardiographic measurements were made, along with the determination of basic serum parameters. Following the treatment period, after ischemia-reperfusion injury, hemodynamic parameters were measured using an isolated working heart model. Western blot analyses of heart tissue followed for evaluating protein expression and histochemical study for the atheroma status determination. WGLL treatment mediated increases in fractional shortening; right ventricular function; peak systolic velocity; tricuspidal annular systolic velocity in live animals; along with improved aortic and coronary flow. Western blot analysis revealed WGLL-associated increases in HO-1 protein and decreases in SOD-1 protein production. WGLL-associated decreases were observed in aortic atherosclerotic plaque coverage, plasma ApoB and the activity of LDH and CK (creatine kinase) in plasma. Plasma LDL was also significantly reduced. The results clearly demonstrate that WGLL has complex cardioprotective effects, suggesting future strategies for its use in prevention and therapy for atherosclerotic disorders
    corecore