209 research outputs found
Large variations in the hole spin splitting of quantum-wire subband edges
We study Zeeman splitting of zone-center subband edges in a cylindrical hole
wire subject to a magnetic field parallel to its axis. The g-factor turns out
to fluctuate strongly as a function of wire-subband index, assuming values that
differ substantially from those found in higher-dimensional systems. We analyze
the spin properties of hole-wire states using invariants of the spin-3/2
density matrix and find a strong correlation between g-factor value and the
profile of hole-spin polarization density. Our results suggest possibilities
for confinement engineering of hole spin splittings.Comment: 4 pages, 3 figures, RevTex4, to appear in PR
Lande-like formula for the g factors of hole-nanowire subband edges
We have analyzed theoretically the Zeeman splitting of hole-quantum-wire
subband edges. As is typical for any bound state, their g factor depends on
both an intrinsic g factor of the material and an additional contribution
arising from a finite bound-state orbital angular momentum. We discuss the
quantum-confinement-induced interplay between bulk-material and orbital
effects, which is nontrivial due to the presence of strong spin-orbit coupling.
A compact analytical formula is provided that elucidates this interplay and can
be useful for predicting Zeeman splitting in generic hole-wire geometries.Comment: 4 pages, 2 figure
Magnetic and Transport Properties of Fe-Ag granular multilayers
Results of magnetization, magnetotransport and Mossbauer spectroscopy
measurements of sequentially evaporated Fe-Ag granular composites are
presented. The strong magnetic scattering of the conduction electrons is
reflected in the sublinear temperature dependence of the resistance and in the
large negative magnetoresistance. The simultaneous analysis of the magnetic
properties and the transport behavior suggests a bimodal grain size
distribution. A detailed quantitative description of the unusual features
observed in the transport properties is given
Nanoscale spin-polarization in dilute magnetic semiconductor (In,Mn)Sb
Results of point contact Andreev reflection (PCAR) experiments on (In,Mn)Sb
are presented and analyzed in terms of current models of charge conversion at a
superconductor-ferromagnet interface. We investigate the influence of surface
transparency, and study the crossover from ballistic to diffusive transport
regime as contact size is varied. Application of a Nb tip to a (In,Mn)Sb sample
with Curie temperature Tc of 5.4 K allowed the determination of
spin-polarization when the ferromagnetic phase transition temperature is
crossed. We find a striking difference between the temperature dependence of
the local spin polarization and of the macroscopic magnetization, and
demonstrate that nanoscale clusters with magnetization close to the saturated
value are present even well above the magnetic phase transition temperature.Comment: 4 page
Anomalous Hall effect in (In,Mn)Sb dilute magnetic semiconductor
High magnetic field study of Hall resistivity in the ferromagnetic phase of
(In,Mn)Sb allows one to separate its normal and anomalous components. We show
that the anomalous Hall term is not proportional to the magnetization, and that
it even changes sign as a function of magnetic field. We also show that the
application of pressure modifies the scattering process, but does not influence
the Hall effect. These observations suggest that the anomalous Hall effect in
(In,Mn)Sb is an intrinsic property and support the application of the Berry
phase theory for (III,Mn)V semiconductors. We propose a phenomenological
description of the anomalous Hall conductivity, based on a field-dependent
relative shift of the heavy- and light-hole valence bands and the split-off
band
Single-born XX /XY chimaeric bulls with normal phenotype
International audienc
- …