7 research outputs found
Diszlokáció rendszerek statisztikus tulajdonságainak vizsgálata = Investigation of the statistical properties of dislocation ensembles
A pályázat cĂ©lkitűzĂ©seinek megfelelĹ‘en diszlokáciĂłk kollektĂv tulajdonságait vizsgáltuk mint elmĂ©letileg mind kĂsĂ©rletileg. Analitikus számĂtásokkal Ă©s numerikus szimuláciĂłval vizsgáltuk a diszlokáciĂłk következtĂ©ben kialakulĂł belsĹ‘ feszĂĽltsĂ©geloszlás tulajdonságait. MegállapĂtottuk, hogy az eloszlás központi rĂ©sze Lorentz eloszlásĂş, mĂg a lecsengĹ‘ tartományban a feszĂĽltsĂ©g köbĂ©vel fordĂtottan arányos. Továbbá kimutattuk, hogy a kĂĽlsĹ‘ feszĂĽltsĂ©g hatására egy a feszĂĽltsĂ©g 4. hatványával leesĹ‘ aszimmetrikus tag jelenik meg. Megmutattuk, hogy egy 2D diszlokáciĂłrendszer relaxáciĂłja során a kĂĽlönbözĹ‘ fizikai mennyisĂ©gek az idĹ‘ hatványfĂĽggvĂ©nyekĂ©nt csengenek le. Kimutattuk, hogy a diszlokáciĂł climb bekapcsolása jĂłl definiált cellaszerkezet kialakulásához vezet.. A korábban mikroszkopikus meggondolásokkal kidolgozott diszlokáciĂł kontinuum elmĂ©letet sikerĂĽlt egy variáciĂłs elvbĹ‘l származtatni. Ez lehetĹ‘vĂ© tette az elmĂ©let általánosĂtását többszörös csĂşszásra ill. oldott atomok hatásának beĂ©pĂtĂ©sĂ©t is. Az elmĂ©let segĂtsĂ©gĂ©vel rĂ©szletesen megvizsgáltuk egy extra hozzáadott diszlokáciĂł terĂ©nek árnyĂ©kolását a többi diszlokáciĂł átrendezĹ‘dĂ©se következtĂ©ben (Debye screening) . A kĂsĂ©rleti munka során nanoindentáciĂłval Cu egykristályokon meghatároztuk a mikrokemĂ©nysĂ©g relatĂv fluktuáciĂłját. Az irodalomban elĹ‘ször megállapĂtottuk, hogy a diszlokáciĂłsűrűsĂ©ghez hasonlĂłan ez is az alkalmazott feszĂĽltsĂ©g fĂĽggvĂ©nyĂ©ben egy Ă©les maximumot mutat. | According to the proposal the collective properties of dislocations were investigated both by theoretical and experimental methods. The properties of the internal stress distribution generated by dislocations were investigated by analytical calculations and computer simulations. It was found that the central part of the distribution is Loretzian while its tail decays with the invers cube of the stress. If external stress is applied the distribution becomes asymmetric. The antisymmetric part decaying with the invers fourth power of the stress. Numerical studies show that during the relaxation of the dislocation ensemble the different macroscopic quantities decay with some power of the time. Beside this, it is obtained that the dislocation climb leads to the the formation of cell structure. The continuum theory of dislocations derived earlier from microscopic considerations was reformulated into a phase field theory. This allowed us to extend the theory to multiple slip and study the influence of solute atoms. With this framework the Debye screening of the stress field of an extra dislocation was analysed in details . The relative fluctuation of microhardness (RFM) was determined by nanoindentation performed on deformed Cu single crystals. It was found that like the fluctuation of the dislocation density the RFM alo exhibits a sharp maximum as a function of applied stress
Submicron plasticity: yield stress, dislocation avalanches, and velocity distribution
The existence of a well defined yield stress, where a macroscopic piece of
crystal begins to plastically flow, has been one of the basic observations of
materials science. In contrast to macroscopic samples, in micro- and
nanocrystals the strain accumulates in distinct, unpredictable bursts, which
makes controlled plastic forming rather difficult. Here we study by simulation,
in two and three dimensions, plastic deformation of submicron objects under
increasing stress. We show that, while the stress-strain relation of individual
samples exhibits jumps, its average and mean deviation still specify a
well-defined critical stress, which we identify with the jamming-flowing
transition. The statistical background of this phenomenon is analyzed through
the velocity distribution of short dislocation segments, revealing a universal
cubic decay and an appearance of a shoulder due to dislocation avalanches. Our
results can help to understand the jamming-flowing transition exhibited by a
series of various physical systems.Comment: 5 page
Role of density fluctuations in the relaxation of random dislocation systems
We study the relaxation dynamics of systems of straight, parallel crystal
dislocations, starting from initially random and uncorrelated positions of the
individual dislocations. A scaling model of the relaxation process is
constructed by considering the gradual extinction of the initial density
fluctuations present in the system. The model is validated by ensemble
simulations of the discrete dynamics of dislocations. Convincing agreement is
found for systems of edge dislocations in single slip irrespective of the net
Burgers vector of the dislocation system. It is also demonstrated that the
model does not work in multiple slip geometries.Comment: 25 pages, 11 figures; submitted to Journal of Statistical Mechanics:
theory and experiment after 2nd round of referenc