14 research outputs found

    Cross-sectional imaging and cytologic investigations in the preoperative diagnosis of parotid gland tumors – An updated literature review

    Get PDF
    An accurate preoperative diagnosis of parotid tumors is essential for the selection and planning of surgical treatment. Various modern cross-sectional imaging and cytologic investigations can support the differential diagnosis of parotid tumors. The aim of this study was to achieve a comprehensive and updated review of modern imaging and cytologic investigations used in parotid tumor diagnosis, based on the latest literature data. This literature review could serve as a guide for clinicians in selecting different types of investigations for the preoperative differential diagnosis of parotid tumors. Magnetic resonance imaging (MRI) with its dynamic and advanced sequences is the first-line imaging investigation used in differentiating parotid tumors. Computed tomography (CT) and positron emission tomography (PET)-CT provide limited indications in differentiating parotid tumors. Fine needle aspiration biopsy and core needle biopsy can contribute with satisfactory results to the cytological diagnosis of parotid tumors. Dynamic MRI with its dynamic contrast-enhanced and diffusion-weighted sequences provides the best accuracy for the preoperative differential diagnosis of parotid tumors. CT allows the best evaluation of bone invasion, being useful when MRI cannot be performed, and PET-CT has value in the follow-up of cancer patients. The dual cytological and imaging approach is the safest method for an accurate differential diagnosis of parotid tumors

    Diffusion-Weighted Magnetic Resonance Imaging as a Noninvasive Parameter for Differentiating Benign and Malignant Intraperitoneal Collections

    No full text
    Background and Objective: The imaging differentiation of benign from malignant intraperitoneal collections (IPCs) relies on the tumoral morphological modifications of the peritoneum, which are not always advocating for malignancy. We aimed to assess ascitic fluid with the apparent diffusion coefficient (ADC) to determine non-invasive, stand-alone, differentiation criteria for benign and malignant intraperitoneal effusions. Materials and Methods: Sixty-one patients with known IPCs who underwent magnetic resonance examinations for reasons such as tumor staging, undetermined abdominal mass and disease follow up were retrospectively included in this study. All subjects had a final diagnosis of the fluid based on pathological examinations, which were divided into benign (n = 37) and malignant (n = 24) IPCs groups. ADC values were measured separately by two radiologists, and the average values were used for comparing the two groups by consuming the independent samples t-test. The receiver operating characteristic analysis was performed to test the ADC values’ diagnostic ability to distinguish malignant from benign collections. Results: The differentiation between benign and malignant IPCs based on ADC values was statistically significant (p = 0.0034). The mean ADC values were higher for the benign (3.543 × 10−3 mm2/s) than for the malignant group (3.057 × 10−3 mm2/s). The optimum ADC cutoff point for the diagnosis of malignant ascites was <3.241 × 10−3 mm2/s, with a sensitivity of 77.78% and a specificity of 80%. Conclusions: ADC represents a noninvasive and reproducible imaging parameter that may help to assess intraperitoneal collections. Although successful in distinguishing malignant from benign IPCs, further research must be conducted in order to certify if the difference in ADC values is a consequence of the physical characteristics of the ascitic fluids or their appurtenance to a certain histopathological group

    Diffusion-Weighted Magnetic Resonance Imaging as a Noninvasive Parameter for Differentiating Benign and Malignant Intraperitoneal Collections

    No full text
    Background and Objective: The imaging differentiation of benign from malignant intraperitoneal collections (IPCs) relies on the tumoral morphological modifications of the peritoneum, which are not always advocating for malignancy. We aimed to assess ascitic fluid with the apparent diffusion coefficient (ADC) to determine non-invasive, stand-alone, differentiation criteria for benign and malignant intraperitoneal effusions. Materials and Methods: Sixty-one patients with known IPCs who underwent magnetic resonance examinations for reasons such as tumor staging, undetermined abdominal mass and disease follow up were retrospectively included in this study. All subjects had a final diagnosis of the fluid based on pathological examinations, which were divided into benign (n = 37) and malignant (n = 24) IPCs groups. ADC values were measured separately by two radiologists, and the average values were used for comparing the two groups by consuming the independent samples t-test. The receiver operating characteristic analysis was performed to test the ADC values’ diagnostic ability to distinguish malignant from benign collections. Results: The differentiation between benign and malignant IPCs based on ADC values was statistically significant (p = 0.0034). The mean ADC values were higher for the benign (3.543 × 10−3 mm2/s) than for the malignant group (3.057 × 10−3 mm2/s). The optimum ADC cutoff point for the diagnosis of malignant ascites was −3 mm2/s, with a sensitivity of 77.78% and a specificity of 80%. Conclusions: ADC represents a noninvasive and reproducible imaging parameter that may help to assess intraperitoneal collections. Although successful in distinguishing malignant from benign IPCs, further research must be conducted in order to certify if the difference in ADC values is a consequence of the physical characteristics of the ascitic fluids or their appurtenance to a certain histopathological group

    Quantitative MRI of Pancreatic Cystic Lesions: A New Diagnostic Approach

    No full text
    The commonly used magnetic resonance (MRI) criteria can be insufficient for discriminating mucinous from non-mucinous pancreatic cystic lesions (PCLs). The histological differences between PCLs’ fluid composition may be reflected in MRI images, but cannot be assessed by visual evaluation alone. We investigate whether additional MRI quantitative parameters such as signal intensity measurements (SIMs) and radiomics texture analysis (TA) can aid the differentiation between mucinous and non-mucinous PCLs. Fifty-nine PCLs (mucinous, n = 24; non-mucinous, n = 35) are retrospectively included. The SIMs were performed by two radiologists on T2 and diffusion-weighted images (T2WI and DWI) and apparent diffusion coefficient (ADC) maps. A total of 550 radiomic features were extracted from the T2WI and ADC maps of every lesion. The SIMs and TA features were compared between entities using univariate, receiver-operating, and multivariate analysis. The SIM analysis showed no statistically significant differences between the two groups (p = 0.69, 0.21–0.43, and 0.98 for T2, DWI, and ADC, respectively). Mucinous and non-mucinous PLCs were successfully discriminated by both T2-based (83.2–100% sensitivity and 69.3–96.2% specificity) and ADC-based (40–85% sensitivity and 60–96.67% specificity) radiomic features. SIMs cannot reliably discriminate between PCLs. Radiomics have the potential to augment the common MRI diagnosis of PLCs by providing quantitative and reproducible imaging features, but validation is required by further studies

    Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis

    No full text
    The classic ultrasonographic differentiation between benign and malignant adnexal masses encounters several limitations. Ultrasonography-based texture analysis (USTA) offers a new perspective, but its role has been incompletely evaluated. This study aimed to further investigate USTA’s capacity in differentiating benign from malignant adnexal tumors, as well as comparing the workflow and the results with previously-published research. A total of 123 adnexal lesions (benign, 88; malignant, 35) were retrospectively included. The USTA was performed on dedicated software. By applying three reduction techniques, 23 features with the highest discriminatory potential were selected. The features’ ability to identify ovarian malignancies was evaluated through univariate, multivariate, and receiver operating characteristics analyses, and also by the use of the k-nearest neighbor (KNN) classifier. Three parameters were independent predictors for ovarian neoplasms (sum variance, and two variations of the sum of squares). Benign and malignant lesions were differentiated with 90.48% sensitivity and 93.1% specificity by the prediction model (which included the three independent predictors), and with 71.43–80% sensitivity and 87.5–89.77% specificity by the KNN classifier. The USTA shows statistically significant differences between the textures of the two groups, but it is unclear whether the parameters can reflect the true histopathological characteristics of adnexal lesions

    Differentiation of Endometriomas from Ovarian Hemorrhagic Cysts at Magnetic Resonance: The Role of Texture Analysis

    No full text
    Background and Objectives: To assess ovarian cysts with texture analysis (TA) in magnetic resonance (MRI) images for establishing a differentiation criterion for endometriomas and functional hemorrhagic cysts (HCs) that could potentially outperform their classic MRI diagnostic features. Materials and Methods: Forty-three patients with known ovarian cysts who underwent MRI were retrospectively included (endometriomas, n = 29; HCs, n = 14). TA was performed using dedicated software based on T2-weighted images, by incorporating the whole lesions in a three-dimensional region of interest. The most discriminative texture features were highlighted by three selection methods (Fisher, probability of classification error and average correlation coefficients, and mutual information). The absolute values of these parameters were compared through univariate, multivariate, and receiver operating characteristic analyses. The ability of the two classic diagnostic signs (“T2 shading” and “T2 dark spots”) to diagnose endometriomas was assessed by quantifying their sensitivity (Se) and specificity (Sp), following their conventional assessment on T1-and T2-weighted images by two radiologists. Results: The diagnostic power of the one texture parameter that was an independent predictor of endometriomas (entropy, 75% Se and 100% Sp) and of the predictive model composed of all parameters that showed statistically significant results at the univariate analysis (100% Se, 100% Sp) outperformed the ones shown by the classic MRI endometrioma features (“T2 shading”, 75.86% Se and 35.71% Sp; “T2 dark spots”, 55.17% Se and 64.29% Sp). Conclusion: Whole-lesion MRI TA has the potential to offer a superior discrimination criterion between endometriomas and HCs compared to the classic evaluation of the two lesions’ MRI signal behaviors

    Computer Tomography in the Diagnosis of Ovarian Cysts: The Role of Fluid Attenuation Values

    No full text
    Pathological analysis of ovarian cysts shows specific fluid characteristics that cannot be standardly evaluated on computer tomography (CT) examinations. This study aimed to assess the ovarian cysts’ fluid attenuation values on the native (Np), arterial (Ap), and venous (Vp) contrast phases of seventy patients with ovarian cysts who underwent CT examinations and were retrospectively included in this study. Patients were divided according to their final diagnosis into the benign group (n = 32) and malignant group (n = 38; of which 27 were primary and 11 were secondary lesions). Two radiologists measured the fluid attenuation values on each contrast phase, and the average values were used to discriminate between benign and malignant groups and primary tumors and metastases via univariate, multivariate, multiple regression, and receiver operating characteristics analyses. The Ap densities (p = 0.0002) were independently associated with malignant cysts. Based on the densities measured on all three phases, neoplastic lesions could be diagnosed with 89.47% sensitivity and 62.5% specificity. The Np densities (p = 0.0005) were able to identify metastases with 90.91% sensitivity and 70.37% specificity, while the combined densities of all three phases diagnosed secondary lesions with 72.73% sensitivity and 92.59% specificity. The ovarian cysts’ fluid densities could function as an adjuvant criterion to the classic CT evaluation of ovarian cysts

    Role of dynamic contrast enhanced magnetic resonance imaging in the diagnosis and management of vascular lesions of the head and neck

    Get PDF
    Vascular anomalies comprise a wide and heterogeneous group of lesions that may be found in all parts of the body, with most of the cases of vascular malformations involving the head and neck region. Ultrasound (US) is the reliable first-line imaging technique to assess flow parameters. However, in some cases, US fails to depict the real extent of the lesions. On the other hand, magnetic resonance imaging (MRI) allows the evaluation of the full extension and anatomic relationship of the vascular anomalies with the neighboring structures and provides hemodynamic characterization using dynamic contrast enhanced MRI (DCE-MRI), avoiding unnecessary invasive catheter-based procedures. DCE-MRI angiography can make a distinction between low and high flow vascular anomalies and it is useful for selecting adequate therapy and appreciating prognosis. The aim of this paper is to review the role of DCE -MRI in the evaluation of flow characteristics and lesion extent in vascular anomalies of the head and neck region

    Usefulness of Saline Sealing in Preventing Pneumothorax after CT-Guided Biopsies of the Lung

    No full text
    This study aimed to assess the effectiveness of saline sealing in reducing the incidence of pneumothorax after a CT-guided lung biopsy. This was a retrospective case-control study of patients who underwent CT-guided biopsies for lung tumors using 18 G semiautomatic core needles in conjunction with 17 G coaxial needles. The patients were divided into two consecutive groups: a historical Group A (n = 111), who did not receive saline sealing, and Group B (n = 87), who received saline sealing. In Group B, NaCl 0.9% was injected through the coaxial needle upon its removal. The incidence of pneumothorax and chest tube insertion was compared between the two groups. Multivariate logistic regression was performed to verify the contribution of other pneumothorax risk factors. The study included 198 patients, with 111 in Group A and 87 in Group B. There was a significantly (p = 0.02) higher pneumothorax rate in Group A (35.1%, n = 39) compared to Group B (20.7%, n = 18). The difference regarding chest tube insertion was not significant (p = 0.1), despite a tendency towards more insertions in Group A (5.4%, n = 6), compared to Group B (1.1%, n = 1). Among the risk factors for pneumothorax, only the presence of emphysema (OR = 3.5, p = 0.0007) and belonging to Group A (OR = 2.2, p = 0.02) were significant. Saline sealing of the needle tract after a CT-guided lung biopsy can significantly reduce the incidence of pneumothorax. This technique is safe, readily available, and inexpensive, and should be considered as a routine preventive measure during this procedure

    The Diagnostic Value of MRI-Based Radiomic Analysis of Lacrimal Glands in Patients with Sjögren’s Syndrome

    No full text
    This study aimed to assess the effectiveness of MRI-based texture features of the lacrimal glands (LG) in augmenting the imaging differentiation between primary Sjögren’s Syndrome (pSS) affected LG and healthy LG, as well as to emphasize the possible importance of radiomics in pSS early-imaging diagnosis. The MRI examinations of 23 patients diagnosed with pSS and 23 healthy controls were retrospectively included. Texture features of both LG were extracted from a coronal post-contrast T1-weighted sequence, using a dedicated software. The ability of texture features to discriminate between healthy and pSS lacrimal glands was performed through univariate, multivariate, and receiver operating characteristics analysis. Two quantitative textural analysis features, RunLengthNonUniformityNormalized (RLNonUN) and Maximum2DDiameterColumn (Max2DDC), were independent predictors of pSS-affected glands (p < 0.001). Their combined ability was able to identify pSS LG with 91.67% sensitivity and 83.33% specificity. MRI-based texture features have the potential to function as quantitative additional criteria that could increase the diagnostic accuracy of pSS-affected LG
    corecore