1,619 research outputs found

    Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Full text link
    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs

    GeV electron beams from a laser-plasma accelerator

    Get PDF
    High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide

    GeV electron beams from a laser-plasma accelerator

    Get PDF
    Abstract-High-quality electron beams with up to 1 GeV energy have been generated by a laser-driven plasma-based accelerator by guiding a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide [1]

    GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator

    Get PDF
    Laser wakefield accelerators can produce electric fields of order 10-100 GV/m, suitable for acceleration of electrons to relativistic energies. The wakefields are excited by a relativistically intense laser pulse propagating through a plasma and have a phase velocity determined by the group velocity of the light pulse. Two important effects that can limit the acceleration distance and hence the net energy gain obtained by an electron are diffraction of the drive laser pulse and particle-wake dephasing. Diffraction of a focused ultrashort laser pulse can be overcome by using preformed plasma channels. The dephasing limit can be increased by operating at a lower plasma density, since this results in an increase in the laser group velocity. Here we present detailed results on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3 cm long preformed discharge-based plasma channel [W. P. Leemans et al., Nature Physics 2, 696 (2006)]. The use of a discharge-based waveguide permitted operation at an order of magnitude lower density and 15 times longer distance than in previous experiments that relied on laser preformed plasma channels. Laser pulses with peak power ranging from 10-40 TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy up to 1 GeV were obtained by channeling a 40 TW peak power laser pulse. The dependence of the electron beam characteristics on capillary properties, plasma density, and laser parameters are discussed. (C) 2007 American Institute of Physics
    corecore