102 research outputs found

    Semi-analytical dark matter halos and the Jeans equation

    Full text link
    Although N-body studies of dark matter halos show that the density profiles, rho(r), are not simple power-laws, the quantity rho/sigma^3, where sigma(r) is the velocity dispersion, is in fact a featureless power-law over ~3 decades in radius. In the first part of the paper we demonstrate, using the semi-analytic Extended Secondary Infall Model (ESIM), that the nearly scale-free nature of rho/sigma^3 is a robust feature of virialized halos in equilibrium. By examining the processes in common between numerical N-body and semi-analytic approaches, we argue that the scale-free nature of rho/sigma^3 cannot be the result of hierarchical merging, rather it must be an outcome of violent relaxation. The empirical results of the first part of the paper motivate the analytical work of the second part of the paper, where we use rho/sigma^3 proportional to r^{-alpha} as an additional constraint in the isotropic Jeans equation of hydrostatic equilibrium. Our analysis shows that the constrained Jeans equation has different types of solutions, and in particular, it admits a unique ``periodic'' solution with alpha=1.9444. We derive the analytic expression for this density profile, which asymptotes to inner and outer profiles of rho ~ r^{-0.78}, and rho ~ r^{-3.44}, respectively.Comment: 37 pg, 14 fig. Accepted to ApJ: added two figures and extended discussion. Note that an earlier related paper (conference proceedings) astro-ph/0412442 has a mistake in eq.(2.2); the correct version is eq.(5) of the present submissio

    The Role of the Radial Orbit Instability in Dark Matter Halo Formation and Structure

    Full text link
    For a decade, N-body simulations have revealed a nearly universal dark matter density profile, which appears to be robust to changes in the overall density of the universe and the underlying power spectrum. Despite its universality, the physical origin of this profile has not yet been well understood. Semi--analytic models by Barnes et al. (2005) have suggested that the density structure of dark matter halos is determined by the onset of the radial orbit instability (ROI). We have tested this hypothesis using N-body simulations of collapsing dark matter halos with a variety of initial conditions. For dynamically cold initial conditions, the resulting halo structures are triaxial in shape, due to the mild aspect of the instability. We examine how variations in initial velocity dispersion affect the onset of the instability, and find that an isotropic velocity dispersion can suppress the ROI entirely, while a purely radial dispersion does not. The quantity sigma^2/vc^2 is a criterion for instability, where regions with sigma^2/vc^2 <~1 become triaxial due to the ROI or other perturbations. We also find that the radial orbit instability sets a scale length at which the velocity dispersion changes rapidly from isotropic to radially anisotropic. This scale length is proportional to the radius at which the density profile changes shape, as is the case in the semi--analytic models; however, the coefficient of proportionality is different by a factor of ~2.5. We conclude that the radial orbit instability is likely to be a key physical mechanism responsible for the nearly universal profiles of simulated dark matter halos.Comment: 13 pages, 12 figures, accepted to Ap

    A call for transparent reporting to optimize the predictive value of preclinical research

    Get PDF
    The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.&amp; nbsp;Published under an exclusive license by AIP Publishing

    A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors

    Get PDF
    The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.Confining plasma and managing disruptions in tokamak devices is a challenge. Here the authors demonstrate a method predicting and possibly preventing disruptions and macroscopic instabilities in tokamak plasma using data from JET

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    Disruption prediction at JET through deep convolutional neural networks using spatiotemporal information from plasma profiles

    Get PDF
    In view of the future high power nuclear fusion experiments, the early identification of disruptions is a mandatory requirement, and presently the main goal is moving from the disruption mitigation to disruption avoidance and control. In this work, a deep-convolutional neural network (CNN) is proposed to provide early detection of disruptive events at JET. The CNN ability to learn relevant features, avoiding hand-engineered feature extraction, has been exploited to extract the spatiotemporal information from 1D plasma profiles. The model is trained with regularly terminated discharges and automatically selected disruptive phase of disruptions, coming from the recent ITER-like-wall experiments. The prediction performance is evaluated using a set of discharges representative of different operating scenarios, and an in-depth analysis is made to evaluate the performance evolution with respect to the considered experimental conditions. Finally, as real-time triggers and termination schemes are being developed at JET, the proposed model has been tested on a set of recent experiments dedicated to plasma termination for disruption avoidance and mitigation. The CNN model demonstrates very high performance, and the exploitation of 1D plasma profiles as model input allows us to understand the underlying physical phenomena behind the predictor decision

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp &lt; 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations

    Testing a prediction model for the H-mode density pedestal against JET-ILW pedestals

    Get PDF
    The neutral ionisation model proposed by Groebner et al (2002 Phys. Plasmas 9 2134) to determine the plasma density profile in the H-mode pedestal, is extended to include charge exchange processes in the pedestal stimulated by the ideas of Mahdavi et al (2003 Phys. Plasmas 10 3984). The model is then tested against JET H-mode pedestal data, both in a 'standalone' version using experimental temperature profiles and also by incorporating it in the Europed version of EPED. The model is able to predict the density pedestal over a wide range of conditions with good accuracy. It is also able to predict the experimentally observed isotope effect on the density pedestal that eludes simpler neutral ionization models
    corecore