1,173 research outputs found
Novel gallium arsenide monolithic microwave devices and their applications
SIGLEAvailable from British Library Document Supply Centre- DSC:DX185536 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Directive emission of red conjugated polymer embedded within zero index metamaterials
Abstract: We numerically demonstrate an impedance-matched multilayer stacked fishnet metamaterial that has zero index with flat high transmittance from 600nm to 620nm. The effective refractive index
Microwave properties of an inhomogeneous optically illuminated plasma in a microstrip gap
The optical illumination of a microstrip gap on a thick semiconductor substrate creates an inhomogeneous electron-hole plasma in the gap region. This allows the study of the propagation mechanism through the plasma region. This paper uses a multilayer plasma model to explain the origin of high losses in such structures. Measured results are shown up to 50 GHz and show good agreement with the simulated multilayer model. The model also allows the estimation of certain key parameters of the plasma, such as carrier density and diffusion length, which are difficult to measure by direct means. The detailed model validation performed here will enable the design of more complex microwave structures based on this architecture. While this paper focuses on monocrystalline silicon as the substrate, the model is easily adaptable to other semiconductor materials such as GaAs
GaN directional couplers for integrated quantum photonics
Large cross-section GaN waveguides are proposed as a suitable architecture to
achieve integrated quantum photonic circuits. Directional couplers with this
geometry have been designed with aid of the beam propagation method and
fabricated using inductively coupled plasma etching. Scanning electron
microscopy inspection shows high quality facets for end coupling and a well
defined gap between rib pairs in the coupling region. Optical characterization
at 800 nm shows single-mode operation and coupling-length-dependent splitting
ratios. Two photon interference of degenerate photon pairs has been observed in
the directional coupler by measurement of the Hong-Ou-Mandel dip with 96%
visibility.Comment: 4 pages, 5 figure
Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium.
Long non-coding RNAs (lncRNAs) have emerged recently as key regulatory molecules with diverse roles at almost every level of the regulation of gene expression. The roles of these RNAs in the pathogenesis of cystic fibrosis (CF); a lethal multisystem, autosomal recessive disorder have yet to be explored. Our aim was to examine the expression profile of lncRNA, in the airway epithelium of people with CF. We examined the expression of 30,586 lncRNAs by microarray (Human LncRNA Array v3.0, Arraystar, Inc.), in vivo in bronchial cells isolated from endobronchial brushings obtained from CF and non-CF individuals. In total, we identified 1,063 lncRNAs with differential expression between CF and non-CF individuals (fold change ≥3, p≤0.001). The microarray also contained probes for ∼26,109 protein coding transcripts, of which 720 were differentially expressed between CF and non-CF brush samples (fold change ≥3, p≤0.001). Confirmation of a selection of differentially expressed coding mRNA and lncRNA transcripts such as XIST and TLR8 was achieved using qRT-PCR. Gene ontology bioinformatics analysis highlighted that many processes over-represented in the CF bronchial epithelium are related to inflammation. These data show a significantly altered lncRNA and mRNA expression profile in CF bronchial cells in vivo. Dysregulation of some of these lncRNAs may play important roles in the chronic infection and inflammation that exists in the lungs of people with CF
Streaking single-electron ionization in open-shell molecules driven by X-ray pulses
We obtain continuum molecular wavefunctions for open-shell molecules in the
Hartree-Fock framework. We do so while accounting for the singlet or triplet
total spin symmetry of the molecular ion, that is, of the open-shell orbital
and the initial orbital where the electron ionizes from. Using these continuum
wavefunctions, we obtain the dipole matrix elements for a core electron that
ionizes due to single-photon absorption by a linearly polarized X-ray pulse.
After ionization from the X-ray pulse, we control or streak the electron
dynamics using a circularly polarized infrared (IR) pulse. For a high intensity
IR pulse and photon energies of the X-ray pulse close to the ionization
threshold of the or orbitals, we achieve control of the
angle of escape of the ionizing electron by varying the phase delay between the
X-ray and IR pulses. For a low intensity IR pulse, we obtain final electron
momenta distributions on the plane of the IR pulse and we find that many
features of these distributions correspond to the angular patterns of electron
escape solely due to the X-ray pulse.Comment: 13 pages, 7 figure
- …