11,718 research outputs found
Two complete mitochondrial genomes from Praticolella mexicana Perez, 2011 (Polygyridae) and gene order evolution in Helicoidea (Mollusca, Gastropoda)
Helicoidea is a diverse group of land snails with a global distribution. While much is known regarding the relationships of helicoid taxa, comparatively little is known about the evolution of the mitochondrial genome in the superfamily. We sequenced two complete mitochondrial genomes from Praticolella mexicana Perez, 2011 representing the first such data from the helicoid family Polygyridae, and used them in an evolutionary analysis of mitogenomic gene order. We found the mitochondrial genome of P. mexicana to be 14,008 bp in size, possessing the typical 37 metazoan genes. Multiple alternate stop codons are used, as are incomplete stop codons. Mitogenome size and nucleotide content is consistent with other helicoid species. Our analysis of gene order suggested that Helicoidea has undergone four mitochondrial rearrangements in the past. Two rearrangements were limited to tRNA genes only, and two involved protein coding gene
Two Complete Mitochondrial Genomes from \u3cem\u3ePraticolella mexicana\u3c/em\u3e Perez, 2011 (Polygyridae) and Gene Order Evolution in Helicoidea (Mollusca, Gastropoda)
Helicoidea is a diverse group of land snails with a global distribution. While much is known regarding the relationships of helicoid taxa, comparatively little is known about the evolution of the mitochondrial genome in the superfamily. We sequenced two complete mitochondrial genomes from Praticolella mexicana Perez, 2011 representing the first such data from the helicoid family Polygyridae, and used them in an evolutionary analysis of mitogenomic gene order. We found the mitochondrial genome of P. mexicana to be 14,008 bp in size, possessing the typical 37 metazoan genes. Multiple alternate stop codons are used, as are incomplete stop codons. Mitogenome size and nucleotide content is consistent with other helicoid species. Our analysis of gene order suggested that Helicoidea has undergone four mitochondrial rearrangements in the past. Two rearrangements were limited to tRNA genes only, and two involved protein coding genes
Two complete mitochondrial genomes from Praticolella mexicana Perez, 2011 (Polygyridae) and gene order evolution in Helicoidea (Mollusca, Gastropoda)
Helicoidea is a diverse group of land snails with a global distribution. While much is known regarding the relationships of helicoid taxa, comparatively little is known about the evolution of the mitochondrial genome in the superfamily. We sequenced two complete mitochondrial genomes from Praticolella mexicana Perez, 2011 representing the first such data from the helicoid family Polygyridae, and used them in an evolutionary analysis of mitogenomic gene order. We found the mitochondrial genome of P. mexicana to be 14,008 bp in size, possessing the typical 37 metazoan genes. Multiple alternate stop codons are used, as are incomplete stop codons. Mitogenome size and nucleotide content is consistent with other helicoid species. Our analysis of gene order suggested that Helicoidea has undergone four mitochondrial rearrangements in the past. Two rearrangements were limited to tRNA genes only, and two involved protein coding gene
Solving Large Scale Instances of the Distribution Design Problem Using Data Mining
In this paper we approach the solution of large instances of the distribution design problem. The traditional approaches do not consider that the instance size can significantly reduce the efficiency of the solution process. We propose a new approach that includes compression methods to transform the original instance into a new one using data mining techniques. The goal of the transformation is to condense the operation access pattern of the original instance to reduce the amount of resources needed to solve the original instance, without significantly reducing the quality of its solution. In order to validate the approach, we tested it proposing two instance compression methods on a new model of the replicated version of the distribution design problem that incorporates generalized database objects. The experimental results show that our approach permits to reduce the computational resources needed for solving large instances by at least 65%, without significantly reducing the quality of its solution. Given the encouraging results, at the moment we are working on the design and implementation of efficient instance compression methods using other data mining techniques
Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx
Background: The Iberian lynx (Lynx pardinus) has been acknowledged as the most endangered felid species in the world. An intense contraction and fragmentation during the twentieth century left less than 100 individuals split in two isolated and genetically eroded populations by 2002. Genetic monitoring and management so far have been based on 36 STRs, but their limited variability and the more complex situation of current populations demand more efficient molecular markers. The recent characterization of the Iberian lynx genome identified more than 1.6 million SNPs, of which 1536 were selected and genotyped in an extended Iberian lynx sample.
Methods: We validated 1492 SNPs and analysed their heterozygosity, Hardy-Weinberg equilibrium, and linkage disequilibrium. We then selected a panel of 343 minimally linked autosomal SNPs from which we extracted subsets optimized for four different typical tasks in conservation applications: individual identification, parentage assignment, relatedness estimation, and admixture classification, and compared their power to currently used STR panels.
Results: We ascribed 21 SNPs to chromosome X based on their segregation patterns, and identified one additional marker that showed significant differentiation between sexes. For all applications considered, panels of autosomal SNPs showed higher power than the currently used STR set with only a very modest increase in the number of markers.
Conclusions: These novel panels of highly informative genome-wide SNPs provide more powerful, efficient, and flexible tools for the genetic management and non-invasive monitoring of Iberian lynx populations. This example highlights an important outcome of whole-genome studies in genetically threatened species
- …