30 research outputs found
RelaciĂłn del intervalo QT corregido con la escala GRACE en pacientes con infarto de miocardio sin elevaciĂłn del segmento ST
Background. The Global Registry of Acute Coronary Events (GRACE) prediction model stratifies patients with non-ST-segment elevation myocardial infarction (NSTEMI). Corrected QT interval (QTc) is not considered in this model. Objective. To evaluate the relationship between the QTc interval and the GRACE score in patients with NSTEMI. Materials and methods. An observational, retrospective study was carried between 2016 and 2019. We included patients with diagnosis of NSTEMI, QTc intervals were calculated with Bazettâs formula, and they were classified into 2 groups: a normal QTc interval (<440 ms) and prolonged (â„440 ms). According to the GRACE score they were classified in three ranges: low risk (â€109 points), intermedium (110 - 139 points) and high (â„140 points), we determined if there were a correlation between QTc interval and the GRACE score. Results. A total of 940 patients with a diagnosis of NSTEMI were admitted in our institution, 634 met the inclusion criteria, there were 390 patients with normal QTc interval and 244 with a prolonged QTc interval. Patients with prolonged QTc were older (65.5 vs 61, p=0.001) with a lower proportion of males (71.7% vs 82.8%, p=0.001). An association was found between the GRACE score and the QTC interval, subjects with a normal QTc had a greater proportion of low and intermediate risk than those with a prolonged QTc (p=0.001). Conclusions. In NSTEMI patients, a normal QTc interval (<440 ms) is associated with a GRACE risk score of low or intermediate risk.Antecedentes. El modelo de prediccioÌn del registro global de eventos coronarios agudos (GRACE por sus siglas en ingleÌs) es usado para estratificar el riesgo en pacientes con infarto de miocardio sin elevacioÌn del segmento ST (IAMSEST). El intervalo QT corregido (QTc) no se considera en este modelo. Objetivo. Evaluar la relacioÌn entre el intervalo QTc con la escala GRACE en pacientes con IAMSEST. Materiales y meÌtodos. Se realizoÌ un estudio observacional retrospectivo entre 2016 y 2019. Se incluyeron pacientes con diagnoÌstico de IAMSEST, los intervalos QTc se calcularon con la foÌrmula de Bazett y se clasificaron en dos grupos: intervalo QTc normal (<440 ms) y prolongado (â„440 ms). SeguÌn el puntaje GRACE fueron clasificados en tres rangos: riesgo bajo (â€109 puntos), intermedio (110-139 puntos) y alto (â„140 puntos), se determinoÌ si existiÌa relacioÌn entre el intervalo QTc y la puntuacioÌn GRACE. Resultados. Durante el periÌodo mencionado ingresaron en nuestro centro 940 pacientes con diagnoÌstico de IAMSEST, 634 cumplieron con los criterios de inclusioÌn; hubo 390 pacientes con intervalo QTc normal y 244 con intervalo QTc prolongado. Los pacientes con QTc prolongado eran mayores (65,5 vs. 61, p=0,001) con menor proporcioÌn de hombres (71,7% vs. 82,8%, p=0,001). Se encontroÌ asociacioÌn entre la escala GRACE y el intervalo QTC, los sujetos con un QTc normal teniÌan una mayor proporcioÌn de riesgo bajo e intermedio que aquellos con un QTc prolongado (p=0,001). Conclusiones. En pacientes con IAMSEST un intervalo QTc normal (<440 ms) se relaciona con una escala de riesgo GRACE de riesgo bajo o intermedio
Clinical presentation of pediatric patients with symptomatic SARS-CoV-2 infection during the first months of the COVID-19 pandemic in a single center in Mexico City
BackgroundThe clinical spectrum of COVID-19 is broad, from asymptomatic to severe cases and death. The objective of this study is to analyze the clinical course of patients attended during the first months of the SARS-CoV-2 pandemic in a third-level pediatric hospital.MethodsDesign: prospective cohort study. Patients with viral respiratory disease or suspected cases of COVID-19 were evaluated at the Pediatric Hospital, National Medical Center XXI Century, Mexico City, from 21 March 2020 to 13 January 2021. Statistical analysis: Chi-square test and Fisherâs exact test were used for comparisons; a logistic regression model was constructed to identify clinical or laboratory characteristics associated with critical disease. A p-value < 0.05 was considered statistically significant.ResultsA total of 697 patients met the operational definition of viral respiratory disease or suspected cases of COVID-19 and underwent real-time reverse transcription polymerase chain reaction (rRT-PCR) SARS-CoV-2 testing. Patients with a positive result were included. Of the 181 patients (26%), 121 (66.8%) had mild disease and were treated as outpatients and 60 (33.1%) were hospitalized. A total of six patients met the criteria for multisystem inflammatory syndrome in children (MIS-C). Of the 60 inpatients, 65% were males, and 82% had one or more comorbidities. The main comorbidities were cancer (42%) and overweight (15%). The median hospital stay was 9 days. The inpatients had a higher frequency of fever, general malaise, dyspnea, chills, polypnea, and cyanosis than the outpatients (p < 0.05). Only 21.4% of the outpatients had one or more comorbidities, which were lower than in the hospitalized patients (p < 0.001). Laboratory data at admission were similar between critically ill and those with moderate and severe disease. The patients who developed pneumonia were at higher risk of critical disease, while older age was associated with a better prognosis. A total of 13 of the 60 inpatients died (mortality 7.1%). All but one had one or more comorbidities: four had cancer, four congenital heart disease, one chronic kidney disease and epilepsy, one EpsteinâBarr virus-induced hemophagocytic lymphohistiocytosis, one obesity, and one diabetes mellitus.ConclusionHospital mortality is high, especially in children with comorbidities. Despite 2 years having passed since the beginning of the COVID-19 pandemic, the epidemiological and clinical data on children are still helpful to improve their prognosis
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data
This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys
Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)
Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters.
Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs).
Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001).
Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio
Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Recommended from our members
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing
three major spectroscopic programs. The Apache Point Observatory Galactic
Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky
Way stars at high resolution and high signal-to-noise ratio in the
near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA)
survey is obtaining spatially-resolved spectroscopy for thousands of nearby
galaxies (median redshift of z = 0.03). The extended Baryon Oscillation
Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas
distributions between redshifts z = 0.6 and 3.5 to constrain cosmology using
baryon acoustic oscillations, redshift space distortions, and the shape of the
power spectrum. Within eBOSS, we are conducting two major subprograms: the
SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray
AGN and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey
(TDSS), obtaining spectra of variable sources. All programs use the 2.5-meter
Sloan Foundation Telescope at Apache Point Observatory; observations there
began in Summer 2014. APOGEE-2 also operates a second near-infrared
spectrograph at the 2.5-meter du Pont Telescope at Las Campanas Observatory,
with observations beginning in early 2017. Observations at both facilities are
scheduled to continue through 2020. In keeping with previous SDSS policy,
SDSS-IV provides regularly scheduled public data releases; the first one, Data
Release 13, was made available in July 2016
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July