4 research outputs found

    Empirical Wavelet Transform-based Detection of Anomalies in ULF Geomagnetic Signals Associated to Seismic Events with a Fuzzy Logic-based System for Automatic Diagnosis

    Get PDF
    Owing to the relevance and severity of damages caused by earthquakes (EQs), the development and application of new methods for seismic activity detection that offer an efficient and reliable diagnosis in terms of processing and performance are still demanding tasks. In this work, the application of the Empirical Wavelet Transform (EWT) for seismic detection in ultra-low-frequency (ULF) geomagnetic signals is presented. For this, several ULF signals associated to seismic activities and random calm periods are analysed. These signals have been obtained through a tri-axial fluxgate magnetometer at the Juriquilla station localized in Queretaro, Mexico, longitude -100.45° N and latitude 20.70°E. In order to show the advantages of the proposal, a comparison with the discrete wavelet transform (DWT) is presented. The results shown a better detection capability of seismic signals before, during, and after the main shock than the ones obtained by the DWT, which makes the proposal a more suitable and reliable tool for this task. Finally, a fuzzy logic (FL)-based system for automatic diagnosis using the variance of the EWT outputs for the tri-axial fluxgate magnetometer signals is also proposed

    Electromagnetic attenuation of eight earthquakes registered in Mexico using FFT-based spectrum and t-test statistical analysis for ULF Q-R ratios signals

    No full text
    A method to improve the detection of seismo-magnetic signals is presented herein. Eight events registered for periods of 24 hours with seismic activity were analyzed and compared with non-seismic periods of the same duration. The distance between the earthquakes (EQs) and the ultra-low frequency detector is of  ρ = (1.8) 100.45M, where M is the magnitude of the EQ reported by the Seismological National Service of Mexico, in a period of three years. An improved fast Fourier transform analysis in the form of the ratio of the vertical magnetic field component to the horizontal one (Q = Bz/Bx) has been developed. There are important differences between the frequencies obtained during the days of seismic activity compared with those with no seismic activity

    Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico

    No full text
    Recently, the analysis of ultra-low-frequency (ULF) geomagnetic signals in order to detect seismic anomalies has been reported in several works. Yet, they, although having promising results, present problems for their detection since these anomalies are generally too much weak and embedded in high noise levels. In this work, a short-time multiple signal classification (ST-MUSIC), which is a technique with high-frequency resolution and noise immunity, is proposed for the detection of seismic anomalies in the ULF geomagnetic signals. Besides, the energy (E) of geomagnetic signals processed by ST-MUSIC is also presented as a complementary parameter to measure the fluctuations between seismic activity and seismic calm period. The usefulness and effectiveness of the proposal are demonstrated through the analysis of a synthetic signal and five real signals with earthquakes. The analysed ULF geomagnetic signals have been obtained using a tri-axial fluxgate magnetometer at the Juriquilla station, which is localized in Queretaro, Mexico (geographic coordinates: longitude 100.45° E and latitude 20.70° N). The results obtained show the detection of seismic perturbations before, during, and after the main shock, making the proposal a suitable tool for detecting seismic precursors

    Experimental studies of anomalous radon activity in the Tlamacas Mountain, Popocatepetl Volcano area, MĂ©xico: new tools to study lithosphere-atmosphere coupling for forecasting volcanic and seismic events

    No full text
    <p>This study presents and discusses the results of soil radon monitoring at three different volcano sites and one reference site, from December 2007 to January 2009. This relates to the activity of the Popocatepetl Volcano and a radon survey and gamma-ray spectrometry in the area between Paso de Cortes and Tlamacas Mountain, and in the adjacent regions. The results are applied to the aspects of atmosphere electricity and lithosphere-atmosphere coupling in relation to the forecasting of volcano and earthquake activity. The monitoring of radon release reveals a decrease in radon concentration (down to total suppression) with approaching moderate volcanic eruptions. The behavior of the radon activity at the Tlamacas site is more apparent, compared to other observational sites. The average level of radon release observed at the Tlamacas site is much higher, with some characteristic variations. Both the radon survey and gamma-ray spectrometry indicate intensive diffusion radon emission localized in the area of Tlamacas Mountain. The average radon concentration in the area of Tlamacas is about 10-20-fold greater than the background volcano values. The new concept of lithosphere-atmosphere coupling is presented: intensive radon release in high elevated areas shortens and modifies the Earth-to-thunderclouds electric circuit, which provokes microdischarges into the air close to the ground, attracting lightning discharges. This concept attempts to explain in a new way the noise-like geomagnetic emissions registered before major earthquakes, and it promotes interest for the study of thunderstorm activity in seismo-active zones, as a promising instrument for earthquake forecasting.</p&gt
    corecore