29,595 research outputs found
Stability of three-dimensional relativistic jets: implications for jet collimation
The stable propagation of jets in FRII sources is remarkable if one takes
into account that large-scale jets are subjected to potentially highly
disruptive three-dimensional (3D) Kelvin-Helmholtz instabilities. Numerical
simulations can address this problem and help clarify the causes of this
remarkable stability. Following previous studies of the stability of
relativistic flows in two dimensions (2D), it is our aim to test and extend the
conclusions of such works to three dimensions. We present numerical simulations
for the study of the stability properties of 3D, sheared, relativistic flows.
This work uses a fully parallelized code Ratpenat that solves equations of
relativistic hydrodynamics in 3D. The results of the present simulations
confirm those in 2D. We conclude that the growth of resonant modes in sheared
relativistic flows could be important in explaining the long-term collimation
of extragalactic jets.Comment: Accepted for publication in A&
Surface-induced layer formation in polyelectrolytes
We analyze, by means of an RPA calculation, the conditions under which a
mixture of oppositely charged polyelectrolytes can micro-segregate in the
neighborhood of a charged surface creating a layered structure. A number of
stable layers can be formed if the surface is sufficiently strongly charged
even at temperatures at which the bulk of the mixture is homogeneous.Comment: 6 pages, 3 figures, revtex, epsf, psfi
Competing Interactions among Supramolecular Structures on Surfaces
A simple model was constructed to describe the polar ordering of
non-centrosymmetric supramolecular aggregates formed by self assembling
triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice
with an Ising-like penalty associated with reversing the orientation of nearest
neighbor dipoles. The choice of the potentials is based on experimental results
and structural features of the supramolecular objects. For films of finite
thickness, we find a periodic structure along an arbitrary direction
perpendicular to the substrate normal, where the repeat unit is composed of two
equal width domains with dipole up and dipole down configuration. When a short
range interaction between the surface and the dipoles is included the balance
between the up and down dipole domains is broken. Our results suggest that due
to surface effects, films of finite thickness have a none zero macroscopic
polarization, and that the polarization per unit volume appears to be a
function of film thickness.Comment: 3 pages, 3 eps figure
Restoring Lost Anti-HER-2 Th1 Immunity in Breast Cancer: A Crucial Role for Th1 Cytokines in Therapy and Prevention
The ErbB/B2 (HER-2/neu) oncogene family plays a critical role in the development and metastatic spread of several tumor types including breast, ovarian and gastric cancer. In breast cancer, HER-2/neu is expressed in early disease development in a large percentage of DCIS lesions and its expression is associated with an increased risk of invasion and recurrence. Targeting HER-2 with antibodies such as trastuzumab or pertuzumab has improved survival, but patients with more extensive disease may develop resistance to therapy. Interestingly, response to HER-2 targeted therapies correlates with presence of immune response genes in the breast. Th1 cell production of the cytokines interferon gamma (IFNγ) and TNFα can enhance MHC class I expression, PD-L1 expression, augment apoptosis and tumor senescence, and enhances growth inhibition of many anti-breast cancer agents, including anti-estrogens and HER-2 targeted therapies. Recently, we have identified that a loss of anti-HER-2 CD4 Th1 in peripheral blood occurs during breast tumorigenesis and is dramatically diminished, even in Stage I breast cancers. The loss of anti-HER-2 Th1 response is specific and not readily reversed by standard therapies. In fact, this loss of anti-HER-2 Th1 response in peripheral blood correlates with lack of complete response to neoadjuvant therapy and diminished disease-free survival. This defect can be restored with HER-2 vaccinations in both DCIS and IBC. Correcting the anti-HER-2 Th1 response may have significant impact in improving response to HER-2 targeted therapies. Development of immune monitoring systems for anti-HER-2 Th1 to identify patients at risk for recurrence could be critical to improving outcomes, since the anti-HER-2 Th1 response can be restored by vaccination. Correction of the cellular immune response against HER-2 may prevent recurrence in high-risk patients with DCIS and IBC at risk of developing new or recurrent breast cancer.Fil: Nocera, Nadia F.. University of Pennsylvania; Estados UnidosFil: Lee, M. Catherine. H. Lee Moffitt Cancer Center; Estados UnidosFil: De La Cruz, Lucy M.. University of Pennsylvania; Estados UnidosFil: Rosemblit, Cinthia. University of Pennsylvania; Estados UnidosFil: Czerniecki, Brian J.. H. Lee Moffitt Cancer Center; Estados Unido
Radiative non-isothermal Bondi accretion onto a massive black hole
In this paper, we present the classical Bondi accretion theory for the case
of non-isothermal accretion processes onto a supermassive black hole (SMBH),
including the effects of X-ray heating and the radiation force due to electron
scattering and spectral lines. The radiation field is calculated by considering
an optically thick, geometrically thin, standard accretion disk as the emitter
of UV photons and a spherical central object as a source of X-ray emission. In
the present analysis, the UV emission from the accretion disk is assumed to
have an angular dependence, while the X-ray/central object radiation is assumed
to be isotropic. This allows us to build streamlines in any angular direction
we need to. The influence of both types of radiation is evaluated for different
flux fractions of the X-ray and UV emissions with and without the effects of
spectral line driving. We find that the radiation emitted near the SMBH
interacts with the infalling matter and modifies the accretion dynamics. In the
presence of line driving, a transition resembles from pure type 1 & 2 to type 5
solutions (see Fig2.1 of Frank etal. 2002), which takes place regardless of
whether or not the UV emission dominates over the X-ray emission. We compute
the radiative factors at which this transition occurs, and discard type 5
solution from all our models. Estimated values of the accretion radius and
accretion rate in terms of the classical Bondi values are also given. The
results are useful for the construction of proper initial conditions for
time-dependent hydrodynamical simulations of accretion flows onto SMBH at the
centre of galaxies.Comment: 10 pages, 10 figures, Accepted to be published in A&
New Physics effects in the flavor-changing neutral couplings of the Top quark
We survey the flavor-changing neutral couplings (FCNC) of the top quark
predicted by some extensions of the Standard Model: THDM, SUSY, L-R symmetric,
TC2, 331, and models with extra quarks. Since the expected sensitivity of the
LHC and ILC for the tcV (V=\gamma,g,Z) and tcH couplings is of order of a few
percent, we emphasize the importance of any new physics effect that gives a
prediction for these FCNC couplings within this limit. We also review the
constraints imposed on these couplings from low-energy precision measurements.Comment: 19 pages, 7 figures. Accepted as a review paper in Int. J. of Mod.
Phys.
Solving the SUSY CP problem with flavor breaking F-terms
Supersymmetric flavor models for the radiative generation of fermion masses
offer an alternative way to solve the SUSY-CP problem. We assume that the
supersymmetric theory is flavor and CP conserving. CP violating phases are
associated to the vacuum expectation values of flavor violating susy-breaking
fields. As a consequence, phases appear at tree level only in the soft
supersymmetry breaking matrices. Using a U(2) flavor model as an example we
show that it is possible to generate radiatively the first and second
generation of quark masses and mixings as well as the CKM CP phase. The
one-loop supersymmetric contributions to EDMs are automatically zero since all
the relevant parameters in the lagrangian are flavor conserving and as a
consequence real. The size of the flavor and CP mixing in the susy breaking
sector is mostly determined by the fermion mass ratios and CKM elements. We
calculate the contributions to epsilon, epsilon^{prime} and to the CP
asymmetries in the B decays to psi Ks, phi Ks, eta^{\prime} Ks and Xs gamma. We
analyze a case study with maximal predictivity in the fermion sector. For this
worst case scenario the measurements of Delta mK, Delta mB and epsilon
constrain the model requiring extremely heavy squark spectra.Comment: 21 pages, RevTex
- …