121 research outputs found
Finding the trigger to Iapetus' odd global albedo pattern: Dynamics of dust from Saturn's irregular satellites
The leading face of Saturn's moon Iapetus, Cassini Regio, has an albedo only
one tenth that on its trailing side. The origin of this enigmatic dichotomy has
been debated for over forty years, but with new data, a clearer picture is
emerging. Motivated by Cassini radar and imaging observations, we investigate
Soter's model of dark exogenous dust striking an originally brighter Iapetus by
modeling the dynamics of the dark dust from the ring of the exterior retrograde
satellite Phoebe under the relevant perturbations. In particular, we study the
particles' probabilities of striking Iapetus, as well as their expected spatial
distribution on the Iapetian surface. We find that, of the long-lived particles
(greater than about 5 microns), most particle sizes (greater than about 10
microns) are virtually certain to strike Iapetus, and their calculated
distribution on the surface matches up well with Cassini Regio's extent in its
longitudinal span. The satellite's polar regions are observed to be bright,
presumably because ice is deposited there. Thus, in the latitudinal direction
we estimate polar dust deposition rates to help constrain models of thermal
migration invoked to explain the bright poles (Spencer & Denk 2010). We also
analyze dust originating from other irregular outer moons, determining that a
significant fraction of that material will eventually coat Iapetus--perhaps
explaining why the spectrum of Iapetus' dark material differs somewhat from
that of Phoebe. Finally we track the dust particles that do not strike Iapetus,
and find that most land on Titan, with a smaller fraction hitting Hyperion. As
has been previously conjectured, such exogenous dust, coupled with Hyperion's
chaotic rotation, could produce Hyperion's roughly isotropic, moderate-albedo
surface.Comment: Accepted for publication in Icaru
Brief Bursts Self-Inhibit and Correlate the Pyramidal Network
A multi-cell patch clamp study reveals the summation properties of frequency-dependent disynaptic inhibition between neocortical pyramidal cells and shows how brief bursts of activity in a few cells can synchronize the entire microcircuit
Rethinking 'risk' and self-management for chronic illness
Self-management for chronic illness is a current high profile UK healthcare policy. Policy and clinical recommendations relating to chronic illnesses are framed within a language of lifestyle risk management. This article argues the enactment of risk within current UK self-management policy is intimately related to neo-liberal ideology and is geared towards population governance. The approach that dominates policy perspectives to ‘risk' management is critiqued for positioning people as rational subjects who calculate risk probabilities and act upon them. Furthermore this perspective fails to understand the lay person's construction and enactment of risk, their agenda and contextual needs when living with chronic illness. Of everyday relevance to lay people is the management of risk and uncertainty relating to social roles and obligations, the emotions involved when encountering the risk and uncertainty in chronic illness, and the challenges posed by social structural factors and social environments that have to be managed. Thus, clinical enactments of self-management policy would benefit from taking a more holistic view to patient need and seek to avoid solely communicating lifestyle risk factors to be self-managed
Vacuum ultraviolet photoabsorption spectroscopy of space-related ices: 1 keV electron irradiation of nitrogen- and oxygen-rich ices
Context. Molecular oxygen, nitrogen, and ozone have been detected on some satellites of Saturn and Jupiter, as well as on comets. They are also expected to be present in ice-grain mantles within star-forming regions. The continuous energetic processing of icy objects in the Solar System induces physical and chemical changes within the ice. Laboratory experiments that simulate energetic processing (ions, photons, and electrons) of ices are therefore essential for interpreting and directing future astronomical observations.
Aims. We provide vacuum ultraviolet (VUV) photoabsorption spectroscopic data of energetically processed nitrogen- and oxygen-rich ices that will help to identify absorption bands and/or spectral slopes observed on icy objects in the Solar System and on ice-grain mantles of the interstellar medium.
Methods. We present VUV photoabsorption spectra of frozen O2 and N2, a 1:1 mixture of both, and a new systematic set of pure and mixed nitrogen oxide ices. Spectra were obtained at 22 K before and after 1 keV electron bombardment of the ice sample. Ices were then annealed to higher temperatures to study their thermal evolution. In addition, Fourier-transform infrared spectroscopy was used as a secondary probe of molecular synthesis to better identify the physical and chemical processes at play.
Results. Our VUV data show that ozone and the azide radical (N3) are observed in our experiments after electron irradiation of pure O2 and N2 ices, respectively. Energetic processing of an O2:N2 = 1:1 ice mixture leads to the formation of ozone along with a series of nitrogen oxides. The electron irradiation of solid nitrogen oxides, pure and in mixtures, induces the formation of new species such as O2, N2, and other nitrogen oxides not present in the initial ice. Results are discussed here in light of their relevance to various astrophysical environments. Finally, we show that VUV spectra of solid NO2 and water can reproduce the observational VUV profile of the cold surface of Enceladus, Dione, and Rhea, strongly suggesting the presence of nitrogen oxides on the surface of the icy Saturn moons
Chloritoid-bearing pelitic rocks of the Horsethief Creek group, southeastern British Columbia
Bibliography: p. 125-131
- …