25 research outputs found
MPLA as an Innovative Immune Countermeasure
Spaceflight perturbs the human immune system. Among other manifestations, crewmembers may experience latent herpes viruses reactivation due to impaired lymphocyte function, as well as allergic/hypersensitivity reactions. Considering future space travel will be of longer duration (thereby increasing stress, exposure to radiation, etc) with no rapid return option, it is of paramount importance to develop a countermeasure(s) to immune dysregulation. Monophosphoryl lipid A (MPLA) is a derivative of lipopolysaccharide (LPS), a potent inflammatory agent that can cause septic shock. MPLA possesses the immune-stimulatory effects of LPS without the adverse inflammatory effects. We hypothesize that treating immune cells with MPLA will boost their function enough to overcome the inhibitory effects of microgravity. While MPLA has been tested as an adjuvant extensively in mice and preliminarily for human vaccines, it has never been assessed for efficacy in microgravity
Plasma Cytokine Levels During Long-Duration Spaceflight
Reduced T cell, granulocyte, NK and monocyte function have all been reported following both long and short duration spaceflight, however these data indicate crews are generally not experiencing inflammatory or adaptive immune activation during spaceflight. There appear to be varied individual crew responses, and specific relationships between cytokines and markers of iron status and muscle turnover that warrant further evaluation. Increases in growth factors and chemokines may indicate other types of adaptation occurring during spaceflight, such as attempts to overcome diminished immunocyte function
Translational Research and Medicine at NASA: From Earth to Space and Back Again
The Space Environment provides many challenges to the human physiology and therefore to extended habitation and exploration. Translational research and medical strategies are meeting these challenges by combining Earth based medical solutions with innovative and developmental engineering approaches. Translational methodologies are current applied to spaceflight related dysregulations in the areas of: (1) cardiovascular fluid shifts, intracranial hypertension and neuro-ocular impairment 2) immune insufficiency and suppression/viral re-expression, 3) bone loss and fragility (osteopenia/osteoporosis) and muscle wasting, and finally 4) radiation sensitivity and advanced ageing. Over 40 years of research into these areas have met with limited success due to lack of tools and basic understanding of central issues that cause physiologic maladaptaion and distrupt homeostatis. I will discuss the effects of living in space (reduced gravity, increased radiation and varying atmospheric conditions [EVA]) during long-duration, exploration-class missions and how translational research has benefited not only space exploration but also Earth based medicine. Modern tools such as telemedicine advances in genomics, proteomics, and metabolomics (Omicssciences) has helped address syndromes, at the systemic level by enlisting a global approach to assessing spaceflight physiology and to develop countermeasures thereby permitting our experience in space to be translated to the Earth's medical community
Evaluation of the Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function
NASA is concerned with the health risks to astronauts, particularly those risks related to radiation exposure. Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of (A) peripheral leukocyte distribution; (B) plasma cytokine levels; (C) cytokine production profiles following whole blood stimulation of either T cells or monocytes
Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns
Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection
Human Research Program Standard Measures in Analogs
To ensure that a minimal set of measures, relevant to human spaceflight risks, is consistently captured from subjects participating in spaceflight analog environments
The data from these measures will be placed in an archive managed by HRP and made available to studies via data sharing agreements
HRP Standard Measures will constitute a database for:
Providing context for data acquired by concurrent experiments
Supporting or developing hypotheses
Evaluating the effectiveness of various countermeasure profiles
Comparing population responses to various mission durations and scenario
Antiviral treatment with valacyclovir reduces virus shedding in saliva of Antarctic expeditioners
IntroductionReactivation of herpes viruses, such as Epstein鈥揃arr virus (EBV), herpes simplex virus 1 (HSV1), and varicella zoster virus (VZV), increases in astronauts during spaceflight, compared with their preflight and postflight levels. Reactivations can increase the risk of associated clinical conditions, such as herpes zoster, chronic neuropathic pain, vision loss, stroke, cognitive impairment, and cold sores. Furthermore, continued viral shedding for longer periods after space travel may increase the risk of viral transmission to uninfected crew contacts, including, but not limited to, the immunocompromised and newborn infants. Thus, it is essential to develop spaceflight countermeasures to prevent herpes viral reactivations to ensure the health of crewmembers and their contacts. One such countermeasure is the prophylactic administration of an antiviral drug (valacyclovir) against the alpha herpesviruses (VZV and HSV1). To determine the effectiveness of this countermeasure, we studied the shedding of EBV, VZV, and HSV1 in Antarctic expeditioners, who have similar salivary viral shedding patterns during winter-over to astronauts during long spaceflights.MethodsThe efficacy of this antiviral drug as a countermeasure was determined using three major parameters in the saliva of expeditioners during winter-over with and without administration of this drug: (i) viral load and frequency, (ii) physiological stress biomarkers [i.e., levels of cortisol, dehydroepiandrosterone (DHEA), and amylase), and (iii) immune markers (i.e., inflammatory cytokines)]. Thirty-two volunteers from two Antarctic stations (McMurdo and South Pole) participated in this study. Participants were randomly assigned to either the treatment group (valacyclovir HCl: 1 g/day) or placebo group (oyster calcium: 500mg/day). ResultsViral shedding of EBV reduced significantly (>聽24-fold) in the treatment group compared with the placebo group. HSV1 was also reduced by more than fivefold, but this was not statistically significant. No VZV shedding was observed in any of the participants. In the placebo group 50% of the saliva samples had measurable viral DNA (EBV, HSV1, or both), compared with 19% of the treatment group. There was no significant change in the ratio of cortisol to DHEA or levels of alpha-amylase, indicating that physiological stress was similar between the groups. No difference was detected in levels of salivary cytokines, except IL-10, which was found in significantly lower levels in the treatment group. DiscussionThese data indicate that valacyclovir is a safe and successful intervention to reduce EBV and HSV1 shedding in individuals subjected to extreme environments and stressors
The ESA-NASA 'CHOICE' Study: Winterover at Concordia Station, Interior Antarctica, as an Analog for Spaceflight-Associated Immune Dysregu1ation
For ground-based space physiological research, the choice of analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assess innate and adaptive immunity, viral reactivataion and stress factors during Concordia winter-over deployment. To date, not all samples have been analyzed. Here, only data will be preliminary presented for those parameters where sample/data analysis is completed (i.e., Leukocyte subsets, T cell function, and intracellular/secreted cytokine profiles.