144 research outputs found
Evaluating the impact of MEDLINE filters on evidence retrieval: study protocol
<p>Abstract</p> <p>Background</p> <p>Rather than searching the entire MEDLINE database, clinicians can perform searches on a filtered set of articles where relevant information is more likely to be found. Members of our team previously developed two types of MEDLINE filters. The 'methods' filters help identify clinical research of high methodological merit. The 'content' filters help identify articles in the discipline of renal medicine. We will now test the utility of these filters for physician MEDLINE searching.</p> <p>Hypothesis</p> <p>When a physician searches MEDLINE, we hypothesize the use of filters will increase the number of relevant articles retrieved (increase 'recall,' also called sensitivity) and decrease the number of non-relevant articles retrieved (increase 'precision,' also called positive predictive value), compared to the performance of a physician's search unaided by filters.</p> <p>Methods</p> <p>We will survey a random sample of 100 nephrologists in Canada to obtain the MEDLINE search that they would first perform themselves for a focused clinical question. Each question we provide to a nephrologist will be based on the topic of a recently published, well-conducted systematic review. We will examine the performance of a physician's unaided MEDLINE search. We will then apply a total of eight filter combinations to the search (filters used in isolation or in combination). We will calculate the recall and precision of each search. The filter combinations that most improve on unaided physician searches will be identified and characterized.</p> <p>Discussion</p> <p>If these filters improve search performance, physicians will be able to search MEDLINE for renal evidence more effectively, in less time, and with less frustration. Additionally, our methodology can be used as a proof of concept for the evaluation of search filters in other disciplines.</p
Recent advances in understanding hypertension development in sub-Saharan Africa
Consistent reports indicate that hypertension is a particularly common finding in black populations. Hypertension occurs at younger ages and is often more severe in terms of blood pressure levels and organ damage than in whites, resulting in a higher incidence of cardiovascular disease and mortality. This review provides an outline of recent advances in the pathophysiological understanding of blood pressure elevation and the consequences thereof in black populations in Africa. This is set against the backdrop of populations undergoing demanding and rapid demographic transition, where infection with the Human Immunodeficiency Virus predominates, and where under and over-nutrition coexist. Collectively, recent findings from Africa illustrate an increased lifetime risk to hypertension from foetal life onwards. From young ages black populations display early endothelial dysfunction, increased vascular tone and reactivity, microvascular structural adaptions, as well as increased aortic stiffness resulting in elevated central and brachial blood pressures during the day and night, when compared to whites. Together with knowledge on the contributions of sympathetic activation and abnormal renal sodium handling, these pathophysiological adaptations result in subclinical and clinical organ damage at younger ages.
This overall enhanced understanding on the determinants of blood pressure elevation in blacks encourages (a) novel approaches to assess and manage hypertension in Africa better, (b) further scientific discovery to develop more effective prevention and treatment strategies, and (c) policymakers and health advocates to collectively contribute in creating health-promoting environments in Africa
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Housing: An Under-Explored Influence on Children’s Well-Being and Becoming
Research on housing has tended to focus on adult outcomes, establishing relationships between housing and a number of aspects of health and well-being. Research exploring the influence of housing on children has been more limited, and has tended to focus on adult concerns around risk behaviours, behavioural problems and educational attainment. While these outcomes are important, they neglect the impact of housing on children’s lives beyond these concerns. There are a number of reasons to believe that housing would play an important role in children’s well-being more broadly. Family stress and strain models highlight how housing difficulties experienced by adults may have knock on effects for children, while Bronfenbrenner’s ecological approach to human development emphasises the importance of children’s experiences of their environments, of which the home is among the most important. This paper summaries the existing evidence around housing and child outcomes, predominantly educational and behavioural outcomes, and argues for the extension of this work to consider the impact of housing on children’s lives more broadly, especially their subjective well-being
First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole
When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by
gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have
assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of
1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center
of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission
ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux
ratio 10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and
width remaining stable over four different observations carried out in different days. Overall, the observed image is
consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in
brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to
the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic
magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 ± 0.7) × 109 Me. Our radiowave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies
and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme
limit and on a mass scale that was so far not accessible
Interpreting seawater temperature range using oxygen isotopes and zooid size variation in Pentapora foliacea (Bryozoa)
This is the first investigation of how two independent proxies for seawater temperature inference (zooid size variation and oxygen isotope ratios of skeletal carbonate) relate to the actual measured ranges of temperature experienced by cheilostome bryozoan colonies. Nine specimens of the bimineralic marine cheilostome bryozoan Pentapora foliacea (Ellis and Solander, 1786) were analysed, collected from ~18-m depth at two localities in Wales, UK—four from Skomer Island (51°42′510″N, 5°13′42.60″W) and five from Porth Ysgaden, Lleyn Peninsula (52°54′6.75″N, 4°38′47.34″W). The annual range of temperature implied by zooid size variability provides a good approximation of the actual range of temperature recorded by a datalogger. However, annual ranges of temperature reconstructed from skeletal oxygen isotope ratios were narrower, typically not showing the lowest temperatures experienced by the colonies. This can be explained by progressive thickening of zooid skeletal walls during the life of the colony that homogenises the temperature signal by time-averaging over the lifetime of the colonies. Our study provides evidence that a combined morphological isotope approach has great potential in the reconstruction of annual ranges in seawater temperatures from historical and fossil bryozoans, particularly for species that lack ontogenetic skeletal wall thickening and bimineralic skeletal composition. As cheilostome bryozoans have been common in benthic communities since the Late Cretaceous, they represent a valuable and underutilised resource for the interpretation of environmental regimes
- …